• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于不同失效准则的群桩可靠度分析

徐志军, 郑俊杰, 边晓亚, 刘勇

徐志军, 郑俊杰, 边晓亚, 刘勇. 基于不同失效准则的群桩可靠度分析[J]. 岩土工程学报, 2012, 34(5): 818-825.
引用本文: 徐志军, 郑俊杰, 边晓亚, 刘勇. 基于不同失效准则的群桩可靠度分析[J]. 岩土工程学报, 2012, 34(5): 818-825.
XU Zhi-jun, ZHENG Jun-jie, BIAN Xiao-ya, LIU Yong. Reliability analysis of pile groups based on different failure criteria[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 818-825.
Citation: XU Zhi-jun, ZHENG Jun-jie, BIAN Xiao-ya, LIU Yong. Reliability analysis of pile groups based on different failure criteria[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 818-825.

基于不同失效准则的群桩可靠度分析  English Version

基金项目: 国家自然科学基金项目(50978112);教育部留学回国人员科研启动基金资助项目(20091341)
详细信息
    作者简介:

    徐志军 (1984 – ),男,河南叶县人,博士研究生。主要从事岩土工程数值计算与可靠度设计工作。

  • 中图分类号: TU473

Reliability analysis of pile groups based on different failure criteria

  • 摘要: 单桩可靠度分析是群桩可靠度分析的基础,但是由于各国采用的失效准则不同,得到的单桩极限承载力也不同,从而求出的单桩可靠度也不同,因此失效标准的选取对群桩可靠度影响很大。整理了国内外确定单桩极限承载力的失效准则,以国内习惯采用的 s – lgt 失效准则为基准,定义其他失效准则的偏差系数。同时利用群桩效应和偏差系数给出了不同失效准则下群桩可靠度的计算方法,为统一评价桩基安全提供了理论依据。算例分析表明:采用不同的失效准则得出的可靠度指标不同,且相差较大,但是群桩基础的可靠性并没有改变。因此,在衡量群桩基础的安全性时,要先确定采用的失效准则,仅利用可靠度指标的计算结果衡量基础的安全性会给工程带来安全隐患。另外群桩效应、系统效应、土体类别和承台类型对可靠度也有较大影响,在可靠度分析时,要对其进行充分的研究和分析。
    Abstract: The reliability analysis of a single pile is the basis of reliability analysis of pile groups. However, the ultimate bearing capacity of the pile and the reliability index obtained using different failure criteria may not be the same due to the differences in failure criteria used in different countries. Therefore, the reliability of pile groups is various according to different failure criteria. The different failure criteria from various countries are examined, and a bias factor defined with respect to s-lgt criterion usually used in China is introduced. Meanwhile, the calculation method of reliability of pile groups considering different criteria is presented using the bias factors and pile group effect, which provides a theoretical basis to calibrate the reliability levels of pile foundation associated with various failure criteria. The results from case studies indicate that considerable reliability index of pile groups can be obtained according to different failure criteria, but the safety of pile group foundation is not variable. Therefore, before judging the safety of pile group foundation, the failure criterion should be chosen, and it can cause relatively significant loss to the project if the calculated reliability index is only used to evaluate the safety of foundation. In addition, the pile group effect, system effect, soil type and cap type have significant influences on the reliability of pile group foundation. Therefore, their contribution to the reliability should be considered in the reliability analysis of pile group foundation.
  • [1] 郑俊杰, 徐志军, 刘 勇, 等. 基于最大熵原理的基桩竖向承载力的可靠度分析[J]. 岩土工程学报, 2010, 32(11): 1643–1647. (ZHENG Jun-jie, XU Zhi-jun, LIU Yong, et al. Reliability analysis for vertical bearing capacity of pile based on the maximum entropy principle[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1643–1647. (in Chinese))
    [2] ZHAO W Y, XU Z J, ZHENG J J. Reliability analysis of vertical bearing capacity of pile using random-fuzzy entropy principle[C]// 6th International Conference on Natural Computation and 7th International Conference on Fuzzy System and Knowledge Discovery. Yantai, 2010: 4189–4193.
    [3] BEA R G, JIN Z, VALLE C, et al. Evaluation of reliability of platform pile foundation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(8): 696–704.
    [4] TANG W H, KULHAWY F H. Uncertainties in offshore axial pile capacity[C]// Proceeding of Foundation Engineering: Current Principles and Practices, ASCE. New York, 1989: 833–847.
    [5] TANG W H, WOODFORD D L, PELLETIER J H. Performance reliability of offshore piles[C]// Proc 22nd Offshore Technology Conference. Houston, 1990: 299–307.
    [6] KULHAWAY F H. From casagrande’s calculated risk to reliability-based design in foundation engineering[J]. Boston Society of Civil Engineering Section, 1996, 11(2): 43–56.
    [7] YOON G L, O’NEILL M W. Design model bias factors for driven piles from experiments at NGES-UH[C]// Proceedings of the 1996 Conference on Uncertainty in the Geologic Environment, UNCERTAINTY’96. Part 2(of 2), Geotechnical Special Publication, Madison, ASCE, 1996: 759–773.
    [8] WHITMAN J L. Load and resistance factor design for highway bridge substructures[R]. FHWA Rep. DTFH61-94-C-00098, Washington D C: Federal Highway Administration, 1997.
    [9] MCVAY M C, BIRGISSON B, ZHANG L M, et al. Load and resistance design for driven piles using dynamic methods-A Florida perspective[J]. Geotechnical Testing Journal, 2000, 23(1): 55–66.
    [10] PAIKOWSKY S G, STENERSEN K L. The performance of the dynamic methods, their controlling parameters and deep foundation specifications[C]// Proc 6th Int Conf on Application of Stress-Wave Theory to Piles. Rotterdam, 2000: 281–304.
    [11] ZHANG L M, TANG W H, NG C W W. Reliability of axially load driven pile groups[J]. Journal of Geotechnical and Geoenvironment Engineering, 2001, 127(12): 1051–1060.
    [12] LEONARDS G A. Investigation of failures[J]. Journal of the Geotechnical Engineering Division, 1982, 108(2): 185–246.
    [13] ZHANG L M, LI D Q, TANG W H. Reliability of bored pile foundations considering bias in failure criteria[J]. Canadian Geotechnical Journal, 2005, 42(4): 1086–1093.
    [14] 周建方, 李典庆. 采用不同失效准则的桩基可靠度分析[J].岩土力学, 2007, 28(3): 540–544. (ZHOU Jian-fang, LI Dian-qing. Reliability analysis of pile foundations considering different failure criteria[J]. Rock and Soil Mechanics, 2007, 28(3): 540–544. (in Chinese))
    [15] JGJ 94-2008建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008. (JGJ 94-2008 Technical code for building pile foundations[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese))
    [16] DAVISSON M T. High capacity piles[C]// Proceeding of ASCE Lecture Series, Innovations in Foundation Construction. New York: America Society of Civil Engineers, 1972.
    [17] REESE L C, O’NEILL M W. Drilled shafts: construction procedures and design methods[M]. Publication No. FHWA-HI-88-042, Washington D C: Federal Highway Administration, 1988.
    [18] AASTO. Load and resistance factor design bridge design specifications[M]. Washington D C: Federal Highway Administration, 1999.
    [19] ISSMFE. Axial pile loading test, part Ⅱ: static loading[J]. Geotechnical Testing Journal, 1985, 8(2): 79–82.
    [20] WHITMAN R V. Evaluating calculated risk in geotechnical engineering[J]. Journal of Geotechnical Engineering, 1984, 110(2): 143–188.
    [21] WHITMAN J L, VOYTKO E P, BARKER R M, et al. Load and resistance factor design for highway bridge substructures[R]. FHWA Rep. DTFH61-94-C-00098, Washington D C: Federal Highway Administration, 1997.
    [22] BECKER D E. Eighteenth Canadian Geotechnical Colloquium: Limit states design for foundations. Part II. Development for the national building code of Canadian[J]. Canadian: Discussion Canadian Geotechnical Journal, 1996, 33(6): 984–1007.
    [23] GB 50009—2001 建筑结构荷载规范[S]. 北京: 中国工业建筑出版社, 2002. (GB 50009—2001 Load code of the design of building structures[S]. Beijing: China Architecture & Building Press, 2002. (in Chinese))
    [24] ZHANG L M. Reliability verification using proof pile load tests[J]. Journal of Geotechnical and Geoenvironment Engineering, 2004, 130(11): 1203–1213.
    [25] 邓志勇, 陆培毅, 王成华. 钻孔灌注桩单桩承载力的可靠度研究[J]. 岩土力学, 2003, 24(1): 83–87. (DENG Zhi-yong, LU Pei-yi, WANG Cheng-hua. Reliability research on bearing capacity of single bored pile[J]. Rock and Soil Mechanics, 2003, 24(1): 83–87. (in Chinese))
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  1
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-23
  • 发布日期:  2012-05-19

目录

    /

    返回文章
    返回