• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含非饱和导排层的毛细阻滞型覆盖层性能 模型试验研究

邓林恒, 詹良通, 陈云敏, 贾官伟

邓林恒, 詹良通, 陈云敏, 贾官伟. 含非饱和导排层的毛细阻滞型覆盖层性能 模型试验研究[J]. 岩土工程学报, 2012, 34(1): 75-80.
引用本文: 邓林恒, 詹良通, 陈云敏, 贾官伟. 含非饱和导排层的毛细阻滞型覆盖层性能 模型试验研究[J]. 岩土工程学报, 2012, 34(1): 75-80.
DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, JIA Guan-wei. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80.
Citation: DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, JIA Guan-wei. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80.

含非饱和导排层的毛细阻滞型覆盖层性能 模型试验研究  English Version

基金项目: 国家自然科学基金项目(50878194, 51010008, 10972195)
详细信息
    作者简介:

    邓林恒( 1985 – ) ,男,湖南永州人,主要从事饱和–非饱和渗流、环境岩土工程与边坡稳定等方面的研究。

  • 中图分类号: TU47

Model tests on capillary-barrier cover with unsaturated drainage layer

  • 摘要: 通过自制试验装置研究了强降雨条件下含非饱和导排层的毛细阻滞型覆盖层性能,试验装置包括 2 m×1 m×1.2 m 的模型槽、降雨模拟器与测量系统等。毛细阻滞型覆盖层模型中细粒土、非饱和导排层和粗粒土分别采用粉土、砂和碎石,模型坡度为 1<>V ∶ 3<>H ,共进行 3 组试验。所模拟的强降雨强度为 65 ~ 76 mm/h ,利用摄像和张力计监测了降雨入渗及侧向导排过程,并分别监测了坡面径流量、各土层的侧向导排量及底部渗漏量随时间变化。在强降雨条件下,试验 Ⅰ 中坡面径流量占降雨量的 69.4% ,入渗的水量中大部分存储在上层粉土中,砂层的侧向导排量为降雨量的 3.5% ,碎石层底部的渗漏量只有降雨量的 2.9% 。试验 Ⅱ 和试验 Ⅲ 中通过添加膨润土降低粉土层渗透性有效减少了降雨入渗量,与试验 Ⅰ 相比,试验 Ⅱ 和试验 Ⅲ 中非饱和砂层侧向排水出现时间延后,试验 Ⅱ 中通过下卧碎石层渗漏量进一步减少至 0.8% ,试验 Ⅲ 中无渗漏。试验结果表明:通过控制上层土 降雨 入渗量及发挥毛细阻滞及侧向导排综合作用,可有效控制该覆盖层在强降雨条件下渗漏量,使毛细阻滞型覆盖层在湿润气候区应用成为可能。
    Abstract: Model tests are carried out to study the response of capillary-barrier cover with unsaturated drainage layer under heavy rainfall situation. The test equipment includes a model box with a dimension of 2 m×1 m×1.2 m, a rainfall simulator and measuring facilities. The materials of fine layer, unsaturated drainage layer and coarse layer of the capillary-barrier cover model are silt, sand and gravel respectively, and the gradient of model is 1<>V: 3<>H. The intensity of simulated rainfall is 65~76 mm/h. During the tests the rainfall infiltration process and lateral drainage phenomenon are observed, and the surface runoff, lateral drainage and percolation through capillary-barrier cover are measured. In Test Ⅰ, runoff accounts for 69.4% of the total rainfall, and most of the infiltration is stored in the silt layer. The lateral drainage of the sand layer is significant, being 3.5% of the total rainfall; and the percolation through the cover is 2.9% of the total rainfall. In Tests Ⅱ and Ⅲ, the infiltration flux is reduced by an addition of bentonite into the silt layer. A delayed response in the lateral drainage is observed in the sand layer, and the percolation is reduced to only 0.8% of the total rainfall in Test Ⅱand no percolation is observed in Test Ⅲ. The model test results indicate that the percolation through the capillary-barrier cover can be controlled under heavy rainfall condition by reducing rainfall infiltration and enhancing capillary barrier effect and lateral drainage capacity. The research makes the application of capillary-barrier cover in humid regions feasible.
  • [1] BONAPARTE R, GROSS B A, DANIEL D E, et al. Draft technical guidance for RCRA/CERCLA final covers[S]. 2004.
    [2] ALBRECHT B A, BENSON C H. Effect of desiccation on compacted natural clays[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2001, 127 : 67 – 75.
    [3] QIAN X, KOERNER R M, GRAY D H. Geotechnical aspects of landfill design and construction[M]. New Jersey: Prentice Hall. 2002.
    [4] SCANLON B R, REEDY R C, KEESE K E, et al. Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern USA[J]. Vadose Zone Journal, 2005, 41): 55 – 71.
    [5] HAUSER V L, WEAND B L, GILL M D. Alternative landfill Covers[R]. Brooks: Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks AFB, TX. 2001.
    [6] RAHARDJO H, KRISDANI H, LEONG E. Application of unsaturated soil mechanics in capillary barrier system[C]// Third Asian Conference on Unsaturated Soils. NSW: Science Press, 2005: 127 – 137.
    [7] STORMONT J C. Unsaturated drainage layers for diversion of infiltrating water[J]. Journal of Irrigation and Drainage Engineering, 1997, 123 : 364 – 366.
    [8] BENSON C H, KHIRE M V. Earthen covers for semi-arid and arid climates[J]. Geotechnical Special Publication, 1995.
    [9] BENSON C H, ALBRIGHT W H, ROESLER A C, et al. Evaluation of final cover performance: field data from the Alternative Cover Assessment ProgramACAP)[C]// Proc Waste Management, 2002, 2 : 1 – 15.
    [10] MORRIS C E, STORMONT J C. Evaluation of numerical simulations of capillary barrier field tests[J]. Geotechnical and Geological Engineering, 1998, 163): 201 – 213.
    [11] MORRIS C E, STORMONT J C. Parametric study of unsaturated drainage layers in capillary barrier[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 12512): 1057 – 1065.
    [12] STORMONT J C. The effectiveness of two capillary barriers on a 10% slope[J]. Geotechnical and Geological Engineering, 1996, 144): 243 – 267.
    [13] LAMBE T W. Soil testing for engineers[M]// Series in Soil Engineering. New York: Wiley; London: Chapman & Hall, 1951.
    [14] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci Soc Am J, 1980, 445): 892 – 898.
    [15] TAMI D, RAHARDJO H, LEONG E C. Effects of hysteresis on steady-state infiltration in unsaturated slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 : 956 – 967.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-02
  • 发布日期:  2012-01-19

目录

    /

    返回文章
    返回