• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

振动历史对砂土非线性剪切模量和阻尼比的影响

柏立懂, 项 伟, Savidis A Stavros, Rackwitz Frank

柏立懂, 项 伟, Savidis A Stavros, Rackwitz Frank. 振动历史对砂土非线性剪切模量和阻尼比的影响[J]. 岩土工程学报, 2012, 34(2): 333-339.
引用本文: 柏立懂, 项 伟, Savidis A Stavros, Rackwitz Frank. 振动历史对砂土非线性剪切模量和阻尼比的影响[J]. 岩土工程学报, 2012, 34(2): 333-339.
BAI Li-dong, XIANG Wei, Savidis A Stavros, Rackwitz Frank. Effects of vibration history on nonlinear shear modulus and damping ratio of sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 333-339.
Citation: BAI Li-dong, XIANG Wei, Savidis A Stavros, Rackwitz Frank. Effects of vibration history on nonlinear shear modulus and damping ratio of sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 333-339.

振动历史对砂土非线性剪切模量和阻尼比的影响  English Version

详细信息
    作者简介:

    柏立懂 (1979 – ) ,男,贵州荔波人,工学博士,高级工程师,主要从事岩土工程应用及研究工作。

  • 中图分类号: TU411.8

Effects of vibration history on nonlinear shear modulus and damping ratio of sand

  • 摘要: 利用 Stokoe 共振柱的非共振模式对干砂试样施加先期扭剪振动,系统研究振动历史对砂土非线性动力特性的影响。研究发现:对某一砂样,存在一个阀值循环次数,小于该阀值前,砂土最大剪切模量随循环次数衰减,大于该阀值后,随之增大。砂土归一化剪切模量几乎不受预荷载频率影响,阻尼比随预荷载频率增大而增大。归一化剪切模量随循环次数增大而减小,阻尼比则随之增大。增大围压将减弱先期振动对归一化模量和阻尼比的影响,而降低围压将进一步放大先期振动的影响。振动历史对归一化剪切模量和阻尼比的影响是土颗粒之间磨损作用和颗粒竖向再定向作用的共同结果。
    Abstract: The effects of vibration history on nonlinear dynamic properties of dry sand are studied by applying torsional previbration using the non-resonant vibration mode by means of the Stokoe resonant column apparatus. The study shows that, for a given sand sample, there is a threshold number, below which Gmax decreases and beyond which it increases with the number of cycles. Normalized shear modulus is not affected by preloading frequency but damping ratio increases with preloading frequency under the confining pressure under which previbration is applied. The normalized shear modulus decreases and the damping ratio increases with the number of cycles. Reloading confining pressure may decrease and unloading confining pressure may further magnify the effects of the vibration history on the normalized shear modulus and the damping ratio. The effects of vibration history on the normalized shear modulus and the damping properties result from for the jointed effects of wear process and reorientation of interparticles in vertical direction.
  • [1] 孙 静 , 袁晓铭 , 陶夏新 . 共振柱试验机试验误差分析 [J] . 哈尔滨工业大学学报 , 2007, 39 (4): 510 – 513. ( SUN Jing, YUAN Xiao-ming, TAO Xia-xin. Error analysis of resonant column device tests[J]. Journal of Harbin Institute of Technology, 2007, 39 (4): 510 – 513. (in Chinese))
    [2] 俞培基 , 秦蔚琴 . 在共振柱仪上研究接触面的动力变形特性 [J]. 水利学报 , 1995(1): 81 – 85. (YU Pei-ji, QIN Wei-qin. Cyclic deformation behavior of interface studied on resonant column test device[J]. Journal of Hydraulic Engineering, 1995(1): 81 – 85. (in Chinese) )
    [3] 袁晓铭 , 孙 静 . 非等向固结下砂土最大动剪切模量增长模式及 Hardin 公式修正 [J] . 岩土工程学报 , 2005, 27 (3): 264 – 269. (YUAN Xiao-ming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula [J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (3): 264 – 269. (in Chinese) )
    [4] 袁晓铭 , 孙 静 . 多功能共振柱刚性试件试验的可靠性分析 [J] . 岩石力学与工程学报 , 2005, 24 (4): 610 – 615. (YUAN Xiao-ming , SUN Jin. Reliability of multipurpose resonant column device in testing rigid specimens [J]. Chinese Journal of Rock Mechanics and Engineering , 2005, 24 (4): 610 – 615. (in Chinese) )
    [5] 曹继东 , 陈正汉 , 王权民 . 软粘土的共振柱试验研究 [J] . 四川建筑科学研究 , 2004, 30 (4): 69 – 71. ( CAO Ji-dong, CHEN Zhen-han, WANG Quan-ming. The resonant column test study of soft clay in amoy[J]. Building Science Research of Sichuan, 2004, 30 (4): 69 – 71. (in Chinese))
    [6] 吕小飞 , 陈培雄 , 杨义菊 , 等 . 海洋粉质粘土共振柱试验研究 [J] . 世界地震工程 , 2010, 26 ( 增刊 1): 1 – 5. ( LÜ Xiao-fei, CHEN Pei-xiong, YANG Yi-ju, et al. The resonant column test study on marine silty clay[J]. World Earthquake Engineering, 2010, 26 (S1): 1 – 5. (in Chinese))
    [7] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: Measurement and parameter effects[J] . Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98 (6): 603 – 624.
    [8] SHERIF M A, ISHIBASHI I. Dynamic shear moduli for dry sands[J] . Journal of the Geotechnical Engineering Division, ASCE, 1976, 102 (11): 1171 – 1184.
    [9] SHERIF M A, ISHIBASHI I, GADDAH A H. Damping ratio for dry sands[J] . Journal of the Geotechnical Engineering Division, ASCE, 1977, 103 (7): 743 – 756.
    [10] BAI L D. Preloading effects on dynamic sand behavior by resonant column tests[D]. Berlin: Technical University Berlin, 2011.
    [11] SILVER M L, SEED H B. Deformation characteristics of sands under cyclic loading[J] . Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97 (8): 1081 – 1098.
    [12] RAY R P, WOODS R D. Modulus and damping due to uniform and variable cyclic loading[J] . Journal of Geotechnical Engineering, ASCE, 1988, 114 (8): 861 – 876
    [13] LI X S, CAI Z Y. Effects of low-number previbration cycles on dynamic properties of dry sand[J] . Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125 (11): 979 – 987.
    [14] DRNEVICH V P, RICHART F E Jr. Dynamic prestraining of dry sand[J] . Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96 (2): 453 – 469.
    [15] WICHTMANN T, TRIANTAFYLLIDIS T. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part I: cyclic and dynamic torsional prestraining[J] . Soil Dynamics and Earthquake Engineering, 2004, 24 (2): 127 – 147.
    [16] TATSUOKA F, IWASAKI T, FUKUSHIMA S, et al. Stress conditions and stress histories affecting shear modulus and damping of sand under cyclic loading[J] . Soils and Foundations, 1979, 19 (2): 29 – 43
    [17] LI X S, YANG W L. Effects of vibration history on modulus and damping of dry sand[J] . Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124 (11): 1071 – 1081.
    [18] YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus G(max) of dry and saturated sands by bender element, resonant column, and torsional shear tests[J] . Canadian Geotechnical Journal, 2008, 45 (10): 1426 – 1438.
    [19] HARDIN B O, BLANDFORD G E. Elasticity of particulate materials[J] . Journal of Geotechnical Engineering, ASCE, 1989, 115 (6): 788 – 805.
    [20] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J] . Geotechnique, 1979, 29 (1): 47 – 65.
    [21] CHEN Y C, ISHIBASHI I. Dynamic shear modulus and evolution of fabric of granular materials[J] . Soils and Foundations, 1990, 30(3) : 1 – 10.
    [22] CHEN Y, HUNG H. Evolution of shear modulus and fabric during shear deformation[J] . Soils and Foundations, 1991, 31 (4): 48 – 160.
计量
  • 文章访问数:  1204
  • HTML全文浏览量:  1
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-28
  • 发布日期:  2012-02-19

目录

    /

    返回文章
    返回