• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于统一硬化参数的砂土临界状态本构模型

姚仰平, 余亚妮

姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832.
引用本文: 姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832.
YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832.
Citation: YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832.

基于统一硬化参数的砂土临界状态本构模型  English Version

基金项目: 国家自然科学基 金项目( 50879001 , 10872016 , 11072016 )
详细信息
    作者简介:

    姚仰平 (1960 – ) ,男,陕西西安人,博士,教授,博士生导师,主要从事土的基本特性和本构模型研究。

  • 中图分类号: TU441 文献标识码: A 文章编号: 1000 – 4548(2011)12 – 1827 – 06

Extended critical state constitutive model for sand based on unified hardening parameter

  • 摘要: 在临界状态理论的基础上,通过引入状态参数来调整硬化参数和剪胀方程,从而更好地反映砂土的剪胀、剪缩特性以及砂土对密度、有效主应力的双重依赖性,通过引入修正屈服函数的参数,能更好地描述砂土的塑性变形特性。同时,模型采用砂土等向固结线和临界状态线在孔隙比与有效应力幂函数平面内呈线性关系,并且只用一组材料参数即可描述在较大密度和较大有效应力范围内砂土的应力应变响应。通过模拟结果与试验结果对比,验证了模型的有效性。
    Abstract: Based on the unified hardening parameter, an extended critical state constitutive model for sand is proposed. One state parameter is used to adjust the hardening parameter and dilatancy equation, giving a better description of dilatancy and contraction behavior for sand. The other parameter is used to revise the yield function, predicting the plastic deformation more appropriately. The introduction of the parameters into the model emphasizes the dependency on both the density and the effective principal stress of sand. The linear isotropic consolidation and the critical state lines are applied in void ratio versus the power of the effective mean stress space. The combined effect of the density and the effective mean stress on sand can be described by the proposed model using a unique set of model parameters in a wide range of density and confining pressure. A comparison between model simulations and experimental results shows the validity of the proposed model.
  • [1] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, London, 1985, 35 (2): 99 – 112.
    [2] CAI Z Y, LI X S. Deformation characteristics and critical state of sand[J]. Chinese Journal of Geotechnical Engineering, 2004, 26 (5).
    [3] LADE V P. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. International Journal of Solids and Structures, 1977(13): 1019 – 1035.
    [4] VERMEER P A. A double hardening model for sand[J]. Geotechnique, 1978, 28 (4): 413 – 433.
    [5] WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Soils and Foundations, 1986, 26 (2): 1 – 15.
    [6] JEFFERIES M G. Nor-Sand: A simple critical state model for sand [J]. Géotechnique, 1993, 43 (1): 91 – 103.
    [7] MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sand[J]. Geotechnique, 1997, 47 (2): 255 – 272.
    [8] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Geotechnique, 2000, 50 (4): 449 – 460.
    [9] LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Geotechnique, 2004, 54 (1): 41 – 55.
    [10] LING H I, YUE D, KALIAKIN V, THEMELIS N J. Anisotropic elatoplastic bounding surface model for cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering , 2006, 128 (7): 748 – 758.
    [11] CONSTANTINE A. Stamatopoulos. An experimental study of the liquefaction strength of silty sands in terms of the state parameter[J]. Soil Dynamics and Earthquake Engineering, 2010, 30 (8): 662 – 678.
    [12] YAO Y P, MATSUOKA H, SUN D A. A unified elastoplastic model for clay and sand with the SMP criterion[C]// Proc 8th Australia New Zealand Conf on Geomechanics, Hobart, 1999, Ⅱ: 997 – 1003.
    [13] YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35 : 210 – 222.
    [14] YAO Y P, SUN D A, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 : 323 – 337.
    [15] VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36 (2): 81 – 91.
    [16] RIEMER M F, SEED R B. Factors affecting apparent positions of steady-state line[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123 (3): 281 – 288.
    [17] WANG Y. Characterization of Dilative shear failure in sand[D]. Hong Kong: Hong Kong University of Science and Technology, 1997.
    [18] LI X S, WANG Y. Linear representation of steady-state line for sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (12): 1215 – 1217.
    [19] RICHART F E, HALL J R, WOOD R D. Vibrations of soils and foundations[M]. NJ: Prentice-Hall, Englewood Cliffs, 1970.
    [20] MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39 (1): 81 – 95.
    [21] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59 (5): 451 – 469.
计量
  • 文章访问数:  1615
  • HTML全文浏览量:  8
  • PDF下载量:  824
  • 被引次数: 0
出版历程
  • 发布日期:  2011-12-14

目录

    /

    返回文章
    返回