• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土的内变量蠕变模型研究

王者超, 乔丽苹, 李术才, 林春金

王者超, 乔丽苹, 李术才, 林春金. 土的内变量蠕变模型研究[J]. 岩土工程学报, 2011, 33(10): 1569-1575.
引用本文: 王者超, 乔丽苹, 李术才, 林春金. 土的内变量蠕变模型研究[J]. 岩土工程学报, 2011, 33(10): 1569-1575.
WANG Zhe-chao, QIAO Li-ping, LI Shu-cai, LIN Chun-jin. An internal-variable creep model for soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569-1575.
Citation: WANG Zhe-chao, QIAO Li-ping, LI Shu-cai, LIN Chun-jin. An internal-variable creep model for soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569-1575.

土的内变量蠕变模型研究  English Version

基金项目: 研奖励基金项目(BS2011HZ008)
详细信息
    作者简介:

    王者超 (1980 – ) ,男,山东高唐人,博士,山东大学讲师,主要从事岩土材料流变性质研究。

  • 中图分类号: TU43

An internal-variable creep model for soils

  • 摘要: 土的蠕变是指在常值应力作用下土的变形随时间而持续增长的现象。沿用传统连续介质力学理论,在土蠕变性质的研究中,人们普遍采用与时间相关的蠕变速率描述土的蠕变行为。然而 在 工程实际中,土体往往要经历复杂的加卸载过程,并经历不同应力应变状态下的蠕变过程。在此复杂条件下,各个蠕变过程的土的内部结构不同,继续采用传统连续介质力学理论描述土的蠕变行为就遇到了困难。与传统连续介质力学理论不同,内变量理论是一种采用材料内部结构变量(即内变量)描述材料性质的一种理论。据此,提出了土的内变量蠕变模型,该模型采用土的不可恢复应变作为土变形过程中的内变量。模型不但可以反映土所受外部荷载对蠕变行为的影响,而且可以反映材料的内部结构变化对蠕变行为的影响。为验证模型的合理性,开展了复杂条件下砂土和黏土的蠕变性质试验,详细讨论了应力和不可恢复应变对土蠕变性质的影响。此外,还讨论了 内变量蠕变模型与传统幂函数蠕变模型参数 之间的关系,并提出了一种可以加快蠕变试验的方法。通过研究发现:土的内变量蠕变本构模型可以反映复杂条件下土的蠕变性质。
    Abstract: Soil creep is such a process that the deformation of soil develops with time under a state of constant stress. Following the tradition of continuum mechanics, the time-dependent creep rate is always employed in the investigations of the soil creep. However, in practices, soils undergo complex loading-unloading cycles and are allowed to creep on the stages at different stress and strain levels. In this complex situation, the initial states (or configurations) of the creep stages are different and thus the traditional continuum mechanics is incapable in describing the soil creep. Different from the traditional continuum mechanics, the internal-variable theory is based on the concept of internal variable, which describes the internal structure of materials. In this study, an internal-variable creep model is proposed, in which the creep rate of soils is dependent on not only applied stress, but also irreversible strain, which is adopted as internal variable for soil deformation. A series of laboratory tests have been performed to verify the proposed creep model. The parametric relation between the proposed internal-variable and the traditional power law creep models is derived. A method to accelerate creep tests is proposed based on the proposed creep model. It is found that the proposed internal-variable creep model is capable in describing the soil creep under complex conditions.
  • [1] SINGH A, MITCHELL J K. General stress-strain-time function for soils[J]. Journal of Soil Mechanics & Foundations Division, ASCE, 1968, 94 (SM1): 21 – 46.
    [2] BISHOP A W, LOVENBURY H T. Creep characteristics of two undisturbed clays[C]// Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1969, 1 : 29 – 37.
    [3] MESRI G, GODLEWSKI P M. Time and stress compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103 (5): 417 – 430.
    [4] 卢萍珍 , 曾 静 , 盛 谦 . 软黏土蠕变试验及其经验模型研究 [J]. 岩土力学 , 2008, 29 (4): 1041 – 1045. (LU Ping-zhen, ZENG Jing, SHENG Qian. Creep tests on soft clay and its empirical models[J]. Rock and Soil Mechanics, 2008, 29 (4): 1041 – 1045. (in Chinese))
    [5] 王者超 , 乔丽苹 . 土蠕变性质及其模型研究综述与讨论 [J]. 岩土力学 , 2011, 32 (8): 2251 – 2260. (WANG Zhe-chao, QIAO Li-ping. A review and discussion of creep behaviour of soil and its models[J]. Rock and soil Mechanics, 2011, 32 (8): 2251 – 2260 . (in Chinese) )
    [6] YIN J H, GRAHAM J. Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal, 1994, 31 (1): 45 – 52.
    [7] WANG Z. Soil creep behaviour: laboratory testing and numerical modeling[D]. Calgary: University of Calgary, 2010.
    [8] 孙 钧 . 岩土材料流变及其工程应用 [M]. 北京 : 中国建筑工业出版社 , 1999. (SUN Jun. Rheological behavior of geomaterials and its engineering applications[M]. Beijing: China Architecture and Building Press, 1999. (in Chinese))
    [9] RICE J R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity [J]. Journal of the Mechanics and Physics of Solids, 1971, 19 (6): 433 – 455.
    [10] COLLINS I F, HOULSBY G T. Application of thermomechanical principles to the modelling of geotechnical materials[J]. Proceedings of Royal Society of London, Series A, 1997, 453 : 1975 – 2001.
    [11] 黄茂松 , 钟辉虹 , 李永盛 . 天然状态结构性软黏土的边界面弹塑性模型 [J]. 水利学报 , 2003, 34 (12): 47 – 52. (HUANG Mao-song, ZHONG Hui-hong, LI Yong-sheng. Elastoplastic boundary surface model for natural soft clay with structural damage[J]. Journal of Hydraulic Engineering, 2003, 34 (12): 47 – 52. (in Chinese))
    [12] 陈敬虞 , 龚晓南 , 邓亚虹 . 基于内变量理论的岩土材料本 构关系研究 [J]. 浙江大学学报(理学版) , 2008, 35 (3): 355 – 360. (CHEN Jing-yu, GONG Xiao-nan, DENG Ya-hong. Research on the constitutive relation of geomaterials based on the theory of internal variable[J]. Journal of Zhejiang University (Science Edition), 2008, 35 (3): 335 – 360. (in Chinese))
    [13] DESAI C S, ZHANG D. Viscoplastic model for geological materials with generalized flow rule[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11 (6): 603 – 620.
    [14] 李兴照 , 黄茂松 , 王录民 . 流变性软黏土的弹塑性边界面本构方程 [J]. 岩石力学与工程学报 , 2006, 26 (7): 1393 – 1401. (LI Xing-zhao, HUANG Mao-song, WANG Lu-min. Bounding surface elasto-viscoplastic constitutive model for rheological behaviors of soft clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 26 (7): 1393 – 1401. (in Chinese))
    [15] MITCHELL J K, SOGA K. Fundamentals of soil behavior [M]. 4th ed. New Jersey: John Wiley & Sons, 2005.
    [16] LADE P V, LIU C T. Experimental study of drained creep behavior of sand[J]. Journal of Engineering Mechanics, 1998, 124 (8): 912 – 920.
    [17] ABAQUS Inc. ABAQUS Documentation[M]. Providence: Rhode Island, 2006.
    [18] MESRI G, CASTRO A. <>Cα/<>Cc concept and<> K0 during secondary compression[J]. Journal of Geotechnical Engineering, 1987, 113 (3): 230 – 247.
    [19] KUHN M R. Micromechanical aspects of soil creep[D]. Berkeley: University of California at Berkeley, 1987.
    [20] BOWMAN E T, SOGA K. Creep, ageing and microstructural change in dense granular materials[J]. Soils and Foundations, 2003, 43 (4): 107 – 117.
    [21] 王者超 , 李术才 . 高应力下颗粒材料一维力学特性研究 II: 蠕变性质 [J]. 岩土力学 , 2010, 31 (11): 3392 – 3396. (WANG Zhe-chao, LI Shu-cai. One dimensional mechanical behavior of granular materials at high stresses, Part II: Creep behavior[J]. Rock and Soil Mechanics, 2011, 31 (11): 3392 – 3396. (in Chinese))
    [22] ADACHI T, OKANO M. A constitutive equation for normally consolidated clay[J]. Soils and Foundations, 1974, 14 (4): 55 – 73.
    [23] 袁 静 , 龚晓南 , 益德清 . 岩土流变模型的比较研究 [J]. 岩石力学与工程学报 , 2001, 20 (6): 772 – 779. (YUAN Jing, GONG Xiao-nan, YI De-qing. Comparison study on rheological constitutive models[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (6): 772 – 779. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 发布日期:  2011-10-14

目录

    /

    返回文章
    返回