• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

有效应力决定饱和岩土材料抗剪强度的摩擦学解释

雷国辉, 陈晶晶

雷国辉, 陈晶晶. 有效应力决定饱和岩土材料抗剪强度的摩擦学解释[J]. 岩土工程学报, 2011, 33(10): 1517-1525.
引用本文: 雷国辉, 陈晶晶. 有效应力决定饱和岩土材料抗剪强度的摩擦学解释[J]. 岩土工程学报, 2011, 33(10): 1517-1525.
LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.
Citation: LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.

有效应力决定饱和岩土材料抗剪强度的摩擦学解释  English Version

基金项目: 中央高校基本科研业务费专项资金项目(2011B02814)
详细信息
    作者简介:

    雷国辉 (1972 – ) ,男,江西丰城人,教授,从事土力学及地基基础工程研究。

  • 中图分类号: TU431

Tribological explanation of effective stress controlling shear strength of saturated geomaterials

  • 摘要: 有效应力决定了岩土材料的变形和强度,有效应力概念虽然已在岩土工程中广泛应用,但是,对于决定饱和岩土材料抗剪强度的有效应力,其理论解释至今却并不充分且受到质疑。为此,通过文献分析,确定了宏观抗剪强度与粒间摩擦强度之间的正相关关系,并运用摩擦学中的黏着摩擦理论,推导了排水和不排水条件下,粒间接触面黏着结点的生长公式和抗剪强度公式。通过对比分析这两种条件下的应力状态对抗剪强度的作用影响,得到了与 Terzaghi 一致的有效应力表达式,并在此基础上,探讨了有效应力和有效应力原理的基本概念和定义。
    Abstract: It is the effective stress that controls the deformation and strength of geomaterials. The principle of effective stress has been utilized extensively in geotechnical engineering. However, theoretical explanation for the effective stress controlling the shear strength of geomaterials is so far by no means sufficient and is doubted. In order to improve this situation, a comprehensive literature review is carried out. This results in a finding of a positive correlation between macroscopic shear strength and interparticle friction strength. The adhesion theory of friction in tribology is adopted to derive the formulae of the junction growth of an interparticle contact and the shear strength under both drained and undrained conditions. Through a comparative study of the influences of the stress states under both conditions on the shear strength, an effective stress expression in consistent with Terzaghi’s expression is achieved. On this basis, the concept and the definition for both the effective stress and the principle of effective stress are discussed.
  • [1] DE BOER R, EHLERS W. The development of the concept of effective stresses[J]. Acta Mechanica, Springer-Verlag, 1990, 83 (1-2): 77 – 92.
    [2] OKA F. Validity and limits of the effective stress concept in geomechanics[J]. Mechanics of Cohesive-Frictional Materials, 1996, 1 (2): 219 – 234.
    [3] MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. 3rd ed. New York: John Wiley & Sons, Inc., 2005.
    [4] JARDINE R J, GENS A, HIGHT D W, et al. Developments in understanding soil behaviour[C]// Advances in Geotechnical Engineering: The Skempton Conference[M]. London: Thomas Telford, 2004, 1 : 103 – 206.
    [5] NUTH M, LALOUI L. Effective stress concept in unsaturated soils: clarification and validation of a unified framework[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32 (7): 771 – 801.
    [6] TERZAGHI K. The shearing resistance of saturated soils and the angle between the planes of shear[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Harvard University, 1936, 1 : 54 – 56.
    [7] CLAYTON C R I, STEINHAGEN H M, POWRIE W. Terzaghi's theory of consolidation, and the discovery of effective stress[J]. Geotechnical Engineering, ICE, 1995, 113 (4): 191 – 205.
    [8] LADE P V, DE BOER R. The concept of effective stress for soil, concrete and rock[J]. Géotechnique, 1997, 47 (1): 61 – 78.
    [9] SKEMPTON A W. Effective stress in soils, concrete and rocks[C]// Proceedings of the Conference on Pore Pressure and Suction in Soils, Butterworths, London, 1960: 4 – 16.
    [10] BLUHM J, DE BOER R. Effective stresses - a clarification[J]. Archive of Applied Mechanics, Springer-Verlag, 1996, 66 (7): 479 – 492.
    [11] DE BOER R. Uplift, friction, capillarity and effective stress: revisited via the porous media theory[J]. Géotechnique, 2001, 51 (9): 811 – 814.
    [12] BISHOP A W, SKINNER A E. The influence of high pore-water pressure on the strength of cohesionless soils[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1977, 284 (1318): 91 – 130.
    [13] JAEGER J C. The 11th Rankine Lecture: Friction of rocks and stability of rock slopes[J]. Géotechnique, 1971, 21 (2): 97 – 134.
    [14] SCHOFIELD A. Disturbed soil properties and geotechnical design[M]. London: Thomas Telford Limited, 2005.
    [15] ATKINSON J. Peak strength of overconsolidated clays[J]. Géotechnique, 2007, 57 (2): 127 – 135.
    [16] SKINNER A E. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles[J]. Géotechnique, 1969, 19 (1): 150 – 157.
    [17] JOST H P. Lubrication (tribology) education and research: a report on the present position and industry's needs[R]. London: Her Majesty's Stationery Office, Department of Education and Science, 1966.
    [18] HALLING J. Principles of tribology[M]. London: MacMillan Press Ltd., 1975.
    [19] 温诗铸 , 黄 平 . 摩擦学原理 [M]. 第 3 版 . 北京 : 清华大学出版社 , 2008. (WEN Shi-zhu, HUANG Ping. Principles of tribology[M]. 3rd edition. Beijing: Tsinghua University Press, 2008. (in Chinese))
    [20] LUDEMA K C. Friction, wear, lubrication: a textbook in tribology[M]. Boca Raton, Florida: CRC Press, Inc., 1996.
    [21] BHUSHAN B. Introduction to tribology[M]. New York: John Wiley & Sons, Inc., 2002.
    [22] CAVARRETTA I, COOP M, O’SULLIVAN C. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 2010, 60 (6): 413 – 423.
    [23] BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116 (4-5): 615 – 626.
    [24] HORN H M, DEERE D U. Frictional characteristics of minerals[J]. Géotechnique, 1962, 12 (4): 319 – 335.
    [25] INDRARATNA B, HAQUE A. Shear behaviour of rock joints[M]. Rotterdam: A. A. Balkema, 2000.
    [26] PEREIRA J P. Rolling friction and shear behaviour of rock discontinuities filled with sand[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34 (3-4): 1 – 17.
    [27] DE TOLEDO P E C, DE FREITAS M H. Laboratory testing and parameters controlling the shear strength of filled rock joints[J]. Géotechnique, 1993, 43 (1): 1 – 19.
    [28] OKAWARA M, MITACHI T. Basic research on mechanism of the residual strength of clay[C]// DI BENEDETTO H, DOANH T, GEOFFROY H, SAUZ é AT C. Proceedings of the 3rd International Symposium on "Deformation Characteristics of Geomaterials"[M]. The Netherlands: Swets & Zeitlinger B V, 2003, 505 – 510.
    [29] O’ROURKE T D, DRUSCHEL S J, NETRAVALI A N. Shear strength characteristics of sand-polymer interfaces[J]. Journal of Geotechnical Engineering, ASCE, 1990, 116 (3): 451 – 469.
    [30] DOVE J E, FROST J D. Peak friction behavior of smooth geomembrane-particle interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125 (7): 544 – 555.
    [31] 郑德宾 , 龚 平 . 土体抗剪强度指标相关性特征研究 [J]. 中国水运 , 2008, 8 (1): 59 – 61. (ZHENG De-bin, GONG Ping. Research on correlative characteristics of soil strength indexes[J]. China Water Transport, 2008, 8 (1): 59 – 61. (in Chinese))
    [32] 童志怡 , 陈从新 , 徐 健 , 等 . 基于黏着摩擦理论的结构面抗剪强度选取方法 [J]. 岩土工程学报 , 2008, 30 (9): 1367 – 1371. (TONG Zhi-yi, CHEN Cong-xin, XU Jian, et al. Selection of shear strength of structural plane based on adhesion friction theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (9): 1367 – 1371. (in Chinese))
    [33] 高文龙 , 姜耀东 , 湛 川 . 软弱结构面表面形态与充填度的力学特性研究 [J]. 工程地质学报 , 2010, 18 (1): 127 – 131. (GAO Wen-long, JIANG Yao-dong, ZHAN Chuan. The study of structural-plane based on apperance and backfilling state[J]. Journal of Engineering Geology, 2010, 18 (1): 127 – 131. (in Chinese))
    [34] LAMBE T W, WHITMAN R V. Soil mechanics[M]. New York: John Wiley & Sons, Inc., 1969.
    [35] BISHOP A W. Discussion on "shear characteristics of a saturated silt, measured in triaxial compression"[J]. Géotechnique, 1954, 4 (1): 43 – 45.
    [36] HORNE M R. The behaviour of an assembly of rotund, rigid, cohesionless particles. III[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 310 (1500): 21 – 34.
    [37] PROCTER D C, BARTON R R. Measurements of the angle of interparticle friction[J]. Géotechnique, 1974, 24 (4): 581 – 604.
    [38] ISHIBASHI I, PERRY C III, AGARWAL T K. Experimental determinations of contact friction for spherical glass particles[J]. Soils and Foundations, 1994, 34 (4): 79 – 84.
    [39] THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50 (1): 43 – 53.
    [40] THORNTON C, ZHANG L. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media[J]. Géotechnique, 2010, 60 (5): 333 – 341.
    [41] MESRI G, ADACHI K, ULLRICH C R. Pore-pressure response in rock to undrained change in all-round stress[J]. Géotechnique, 1976, 26 (2): 317 – 330.
    [42] SRIDHARAN A, VENKATAPPA RAO G. Shear strength behaviour of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1979, 29 (2): 177 – 193.
    [43] GRAHAM J, OSWELL J M, GRAY M N. The effective stress concept in saturated sand-clay buffer[J]. Canadian Geotechnical Journal, 1992, 29 (6): 1033 – 1043.
    [44] HUECKEL T. On effective stress concepts and deformation in clays subjected to environmental loads: discussion[J]. Canadian Geotechnical Journal, 1992, 29 (6): 1120 – 1125.
    [45] 沈珠江 . 关于固结理论和有效应力的讨论 [J]. 岩土工程学报 , 1995, 17 (6): 118 – 119. (SHEN Zhu-jiang. Discussion on theory of consolidation and effective stress[J]. Chinese Journal of Geotechnical Engineering, 1995, 17 (6): 118 – 119. (in Chinese))
    [46] 沈珠江 . 莫把虚构当真实——岩土工程界概念混乱现象剖析 [J]. 岩土工程学报 , 2003, 25 (6): 767 – 768. (SHEN Zhu-jiang. No confusing fiction with reality —— analysis of misunderstanding of some concepts in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (6): 767 – 768. (in Chinese))
    [47] 李广信 . 有效应力原理能够推翻吗 [J]. 岩土工程界 , 2007, 10 (7): 22-26. (LI Guang-xin. Can the principle of effective stress be overthrew[J]. Geotechnical Engineering World, 2007, 10 (7): 22 – 26. (in Chinese))
    [48] SINGH P N, WALLENDER W W. Effective stress from force balance on submerged granular particles[J]. International Journal of Geomechanics, 2007, 7 (3): 186 – 193.
    [49] BISHOP A W, BLIGHT G E. Some aspects of effective stress in saturated and partly saturated soils[J]. Géotechnique, 1963, 13 (3): 177 – 197.
    [50] SIMONS N E, MENZIES B K. A note on the principle of effective stress[J]. Géotechnique, 1974, 24 (2): 259 – 261.
    [51] MERCKELBACH L M, KRANENBURG C. Determining effective stress and permeability equations for soft mud from simple laboratory experiments[J]. Géotechnique, 2004, 54 (9): 581 – 591.
    [52] JENG D S, HSU J R C. Wave-induced soil response in a nearly saturated sea-bed of finite thickness[J]. Géotechnique, 1996, 46 (3): 427 – 440.
    [53] KHALILI N, GEISER F, BLIGHT G E. Effective stress in unsaturated soils: review with new evidence[J]. International Journal of Geomechanics, ASCE, 2004, 4 (2): 115 – 126.
    [54] DE BUHAN P, DORMIEUX L. A micromechanics-based approach to the failure of saturated porous media[J]. Transport in Porous Media, 1999, 34 (1-3): 47 – 62.
    [55] LYDZBA D, SHAO J-F. Stress equivalence principle for saturated porous media[J]. Comptes Rendus Mecanique, 2002, 330 (4): 297 – 303.
    [56] DIDWANIA A K. Micromechanical basis of concept of effective stress[J]. Journal of Engineering Mechanics, ASCE, 2002, 128 (8): 864 – 868.
    [57] DE BUHAN P, DORMIEUX L. On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach[J]. Journal of the Mechanics and Physics of Solids, 1996, 44 (10): 1649 – 1667.
    [58] HOULSBY G T. The work input to a granular material[J]. Géotechnique, 1979, 29 (3): 354 – 358.
    [59] HOULSBY G T, DEAN E T R. Discussion: editorial[J]. Géotechnique, 2005, 55 (5): 415 – 417.
    [60] LI X S. Effective stress in unsaturated soil: a microstructural analysis[J]. Géotechnique, 2003, 53 (2): 273 – 277.
    [61] BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J]. International Journal of Solids and Structures, 2006, 43 (6): 1764 – 1786.
    [62] GHABEZLOO S , SULEM J, GU é DON S, MARTINEAU F. Effective stress law for the peameability of a limestone[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46 (2): 297 – 306.
    [63] LU N. Is matric suction a stress variable?[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134 (7): 899 – 905.
    [64] KHALILI N, ZARGARBASHI S. Influence of hydraulic hysteresis on effective stress in unsaturated soils[J]. Géotechnique, 2010, 60 (9): 729 – 734.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 发布日期:  2011-10-14

目录

    /

    返回文章
    返回