• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

无黏性土剪胀性的细观认识

雷国辉, 陈晶晶

雷国辉, 陈晶晶. 无黏性土剪胀性的细观认识[J]. 岩土工程学报, 2011, 33(9): 1333-1339.
引用本文: 雷国辉, 陈晶晶. 无黏性土剪胀性的细观认识[J]. 岩土工程学报, 2011, 33(9): 1333-1339.
LEI Guo-hui, CHEN Jing-jing. Microscopic understanding of dilatancy in cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1333-1339.
Citation: LEI Guo-hui, CHEN Jing-jing. Microscopic understanding of dilatancy in cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1333-1339.

无黏性土剪胀性的细观认识  English Version

基金项目: 中央高校基本科研业务费专项资金项目( 2011B02814 )
详细信息
    作者简介:

    雷国辉 (1972 – ) ,男,江西丰城人,教授,从事土力学及地基基础工程研究。

  • 中图分类号: TU431

Microscopic understanding of dilatancy in cohesionless soils

  • 摘要: 针对规则的椭圆形颗粒、圆形和履带形颗粒以及不规则形状颗粒组成的土体进行了平面力学分析,推导了应力比和塑性应变增量比表达式,建立了由土体本身内在材料属性,包括颗粒的形状、大小或级配、以及布局方式或组构,所决定的细观剪胀模型。分析结果表明,在建立状态相关的宏观剪胀理论时,状态的概念并不仅仅 局限于描述土体颗粒布局方式的孔隙比状态参数,还应包括其它能够反映颗粒形状、大小或级配的宏观状态参数。
    Abstract: Expressions for stress ratios and plastic strain increment ratios are derived from the planar me chanical analyses of soils consisting of particles of regular elliptical shape, circular and crawler belt shapes, and of irregular shapes. On this basis, a microscopic dilatancy model is established depending on the intrinsic characteristics of soil materials including particle shape, particle size or gradation, and particle packing or fabric. It is shown from the model analyses that when establishing the macroscopic state-dependent dilatancy theory, the concept of the state should not be limited to only the void ratio state parameter describing the soil particle packing. Other macroscopic state parameters capable of reflecting the particle shape, size and gradation should be also included.
  • [1] 李广信 . 高等土力学 [M]. 北京 : 清华大学出版社 , 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [2] ZHANG J, SALGADO R. Stress-dilatancy relation for Mohr-Coulomb soils following a non-associated flow rule[J]. Géotechnique, 2010, 60 (3): 223 – 226.
    [3] GUO P, WAN R. A rational approach to stress-dilatancy modelling using an explicit micromechanical formulation [C]// EXADAKTYLOS G E, VARDOULAKIS I G. Proceedings of the 7th International Workshop on "Bifurcations, Instabilities, Degradation in Geomechanics" [M]. Springer-Verlag Berlin Heidelberg, 2007: 201 – 230.
    [4] COLLINS I F, MUHUNTHAN B, TAI A T T, PENDER M J. The concept of a 'Reynolds-Taylor state' and the mechanics of sands[J]. Géotechnique, 2007, 57 (5): 437 – 447.
    [5] BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36 (1): 65 – 78.
    [6] BEEN K, JEFFERIES M. Stress-dilatancy in very loose sand[J]. Canadian Geotechnical Journal, 2004, 41 (5): 972 – 989.
    [7] LIU S, MATSUOKA H. Microscopic interpretation on a stress-dilatancy relationship of granular materials[J]. Soils and Foundations, 2003, 43 (3): 73 – 84.
    [8] LEE J, EUN J, LEE K, PARK Y, KIM M. In-situ evaluation of strength and dilatancy of sands based on CPT results[J]. Soils and Foundations, 2008, 48 (2): 255 – 265.
    [9] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50 (4): 449 – 460.
    [10] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35 (2): 99 – 112.
    [11] KRUYT N P, ROTHENBURG L. Kinematic and static assumptions for homogenization in micromechanics of granular materials[J]. Mechanics of Materials, 2004, 36 (12): 1157 – 1173.
    [12] 蔡正银 , 李相菘 . 砂土的剪胀理论及其本构模型的发展 [J]. 岩土工程学报 , 2007, 29 (8): 1122 – 1128. (CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (8): 1122 – 1128. (in Chinese))
    [13] FROSSARD E. Effect of sand grain shape on interparticle friction: indirect measurements by Rowe's stress dilatancy theory[J]. Géotechnique, 1979, 29 (3): 341 – 350.
    [14] SIMONI A, HOULSBY G T. The direct shear strength and dilatancy of sand-gravel mixtures[J]. Geotechnical and Geological Engineering, 2006, 24 (3): 523 – 549.
    [15] KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (6): 621 – 629.
    [16] COX M R, BADHU M. Grain shape quantifications and their relationship to dilatancy[C]// FRATTA D O, PUPPALA A J, MUHUNTHAN B. GeoFlorida 2010: advances in analysis, modeling, and design (Geotechnical Special Publication No. 199)[M]. Reston VA: American Society of Civil Engineers, 2010, 540 – 549.
    [17] ROTHENBURG L, BATHURST R J. Micromechanical features of granular assemblies with planar elliptical particles[J]. Géotechnique, 1992, 42 (1): 79 – 95.
    [18] LIN X, NG T-T. A three-dimensional discrete element model using arrays of ellipsoids[J]. Géotechnique, 1997, 47 (2): 319 – 329.
    [19] SALLAM A M, ASHMAWY A K. Effect of particle shape and angularity on dilation of granular soils: a discrete element approach[C]// Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering[M]. IOS Press, 2009, 1 : 417 – 420.
    [20] NG T-T. Fabric evolution of ellipsoidal arrays with different particle shapes[J]. Journal of Engineering Mechanics, 2001, 127 (10): 994 – 999.
    [21] POWRIE W, NI Q, HARKNESS R, ZHANG X. Numerical modelling of plane strain tests on sands using a particulate approach[J]. Géotechnique, 2005, 55 (4): 297 – 306.
    [22] NG T-T. Shear strength of assemblies of ellipsoidal particles[J]. Géotechnique, 2004, 54 (10): 659 – 669.
    [23] NG T-T. Behavior of ellipsoids of two sizes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (10): 1077 – 1083.
计量
  • 文章访问数:  1611
  • HTML全文浏览量:  1
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 发布日期:  2011-09-14

目录

    /

    返回文章
    返回