• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于离心机和数值模拟的深基坑开挖支护结构受力和变形研究

孙慧, 李从安, 李波, 王志鹏

孙慧, 李从安, 李波, 王志鹏. 基于离心机和数值模拟的深基坑开挖支护结构受力和变形研究[J]. 岩土工程学报, 2024, 46(S2): 114-118. DOI: 10.11779/CJGE2024S20012
引用本文: 孙慧, 李从安, 李波, 王志鹏. 基于离心机和数值模拟的深基坑开挖支护结构受力和变形研究[J]. 岩土工程学报, 2024, 46(S2): 114-118. DOI: 10.11779/CJGE2024S20012
SUN Hui, LI Congan, LI Bo, WANG Zhipeng. Stresses and deformations of support structures of deep foundation pit based on centrifuge and numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 114-118. DOI: 10.11779/CJGE2024S20012
Citation: SUN Hui, LI Congan, LI Bo, WANG Zhipeng. Stresses and deformations of support structures of deep foundation pit based on centrifuge and numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 114-118. DOI: 10.11779/CJGE2024S20012

基于离心机和数值模拟的深基坑开挖支护结构受力和变形研究  English Version

基金项目: 

国家自然科学基金项目 52208329

安徽省引江济淮集团有限公司科技项目 YJJH-ZT-ZX-20230118528

安徽省引江济淮集团有限公司科技项目 YJJH-ZT-ZX2019 1031216

中央级公益性科研所基本科研业务费项目 CKSF2023327/YT

详细信息
    作者简介:

    孙慧(1980—),女,博士,高级工程师,主要从事岩土工程方面的研究。E-mail:sunhui_hust@126.com

  • 中图分类号: TU411

Stresses and deformations of support structures of deep foundation pit based on centrifuge and numerical simulation

  • 摘要: 依据实际基坑开挖和支护结构工程特性进行模型概化,得出适合的离心模型试验方案,采用离心模型试验分析超深基坑开挖过程支护结构工程的受力和变形分布规律特征。同时建立三维有限元模型对圆形基坑开挖过程中支护结构的变形进行数值模拟,并将试验和数值计算结果进行对比分析。结果表明:支护结构水平位移模式为两头小,中间大的“涨肚型变形”;并且随着基坑深度的加深,地下连续墙水平位移最大值点逐渐下移;地表沉降呈凹槽形沉降形式,随着开挖的进行,沉降槽底部向着远离基坑的方向发展;地连墙背后土压力变化值呈非线性,开挖初期,土压力沿深度变化很小,但随着开挖的进行,土压力变化量逐渐增大;数值分析与离心模型试验的开挖支护结构变形特征结果较相近。研究成果可为基坑开挖设计切实有效的支护结构提供科学依据。
    Abstract: Based on the actual characteristics of excavation and support structures of foundation pit, a suitable centrifugal model test scheme is obtained, and the centrifugal model test is used to analyze the distribution characteristics of stress and deformation of the support structures of the ultra-deep foundation pit during the excavation process. Simultaneously a three-dimensional finite element model is established to simulate the deformation of the support structures during the excavation process of a circular foundation pit, and the test and numerical results are compared and analyzed. The results show that the horizontal displacement mode of the support structures is the "bulge shaped deformation" with small ends and large middle. As the depth of the foundation pit increases, the point with the maximum horizontal displacement of the underground diaphragm wall gradually moves downwards. The surface settlement is in the form of grooves, and as excavation continues, the bottom of the settlement groove develops towards the direction away from the foundation pit. The variation of soil pressure behind the diaphragm wall is non-linear. At the early stage of excavation, the variation of soil pressure along depth is small, but as excavation continues, the variation of soil pressure gradually increases. As the excavation continues, the bending moment value gradually increases, reaching the maximum positive bending moment near the depth of 17 m, about 2200 kN·m/m. The deformation characteristics of the support structures obtained from the numerical analysis and centrifugal model tests are relatively similar. The research results contribute to providing scientific basis for proposing practical and effective protection measures of the support structures for excavation of foundation pits.
  • 非饱和状态是影响土体力学特性的重要因素。基质吸力的增加直接降低了土体的含水率,提高了土体的抗剪强度和模量,进而对岩土工程的稳定性产生显著影响。因此,土水特征研究一直是非饱和土研究的热点。

    过去,人们对细粒土(如黏土、粉质黏土、砂土等)的土水特征进行了大量研究,但对大颗粒粗粒堆积土的土水特征研究较少,主要是受限于现有测试设备的尺寸,它们只能对小尺寸的土样进行测试。然而,粗粒堆积土含较多10~60 mm的颗粒,因此小尺寸试验设备不能满足大颗粒土体试验的基本要求(试样土样的直径需大于或等于土样最大粒径的5倍)。因此,目前鲜有报道粗粒堆积土土-水特征的研究成果。

    而且,人们普遍认为,粗粒堆积土的持水能力较弱,对土体的变形和强度几乎没有影响,然而,目前的研究结果表明,土体的SWCC受许多因素的影响,如密度、干湿循环、应力历史、细粒土含量等[1-2]。其中,细粒土的含量对土体SWCC有更显著的影响。粗粒堆积土中不仅含有大颗粒,而且含有大量细粒土。随着细粒土含量的增加,土体的SWCC不可避免地会发生变化,土体的力学特性将逐渐受到影响。因此,在细粒土含量增加的条件下,对粗粒堆积土土水特性的研究具有重要的理论意义和实际应用价值。

    土水特性试验是一种耗时的试验,因为在每个阶段的气体压力下,土体中的气液平衡时间较长。因此,一般来说,研究土体SWCC的快速方法是建立SWCC的经验公式[3],例如Van Genuishen公式和Fredlund公式属于这种预测方法。这些模型只需要使用少量的试验数据来拟合经验公式中的关键参数,就可以得到完整的SWCC。然而,使用经验公式获得SWCC也是基于一些试验数据。为了进一步简化SWC的应用,一些学者在总结了大量土体的SWCC后,建立了与土颗粒分布相关的SWCC预测模型。例如,Arya等[4]、Tyler等[5]、Sweijen等[6]都建立了许多基于土颗粒级配的SWCC预测模型。这些模型基于细粒土的SWCC预测,其对粗粒堆积土的适用性仍需进一步研究。

    针对粗粒堆积土SWCC研究的不足,本文首先介绍了一种新开发的非饱和粗粒堆积土三轴试验系统,该系统可以对粗粒堆积土进行大尺寸SWCC试验。在此基础上,总结了粗粒堆积土的SWCC试验方法和吸力平衡标准,研究了细粒土含量增加条件下粗粒堆积土SWCC的变化规律。最后,利用经典的AP模型,分析并得出了适用于粗粒堆积土SWCC的预测方法。

    大型非饱和粗粒堆积土动静态三轴试验系统由压力控制系统、轴压加载系统、数据采集系统以及软件控制与分析系统组成。其中,涉及粗粒堆积土SWCC试验的主要系统和部件包括:陶土板底座、气压控制装置和排水测量系统,见图 1。大型非饱和三轴仪试样尺寸为150 mm×300 mm,该试验系统允许的最大颗粒粒径最大可达30 mm,这就大大消除了试验时替代大颗粒土所带来的偏差,试得试验结果更加符合实际。陶土板底座由3个具有高进气值的小陶土板构成,在有效隔绝土样气体排放的同时,避免了装样过程中陶土板受冲击破裂。

    图  1  非饱和粗粒堆积土三轴仪
    Figure  1.  Triaxial apparatus for unsaturated coarse-grained soil

    试验土样取自某高铁站粗粒堆积土高填方边坡。为了研究不同细粒料含量(颗粒粒径小于0.075 mm)对粗粒堆积土土水特征曲线的影响,设计了3组细粒料含量不同的试样,细粒料质量含量分别为4.525%,9.05%,13.575%,试样的土颗粒级配见图 2。3组试样在粒径为5~30 mm的占比几乎相同,颗粒级配差异主要体现在5 mm粒径以下部分,并重点关注0.075 mm以下部分的含量。3组试样的干密度均控制为1.8 g/cm3。将配置好的试样搅拌均匀,分5次平均加入制样桶中。每次加样后应压实试样,控制单次加样高度为60 mm。

    图  2  土样颗粒级配曲线
    Figure  2.  Grain-size distribution curves of soil particles

    粗粒土SWCC试验步骤参考细粒土试验步骤,不同的是,由于粗粒堆积土样品尺寸大、饱和含水率高,试验期间的气液平衡标准不同于细粒土试验。

    小颗粒土壤水分特征试验的基质吸力平衡准则大致可分为两类:第一类是根据排水量与样本量的比例进行控制。例如,在褚进晶等[7]对黏土水的特性试验中,平衡标准是每2 h排水量小于样品体积的0.05%。第二类是控制排水量。例如,Pham[8]采用的平衡标准是,24 h内土壤样品的排水质量小于0.1 g。

    由于粗粒堆积土样本的含水率相对较高,第二类控制标准对于大样本粗粒堆积土来说过于严格,因此根据第一类平衡标准来判断粗粒堆积土吸力平衡更合适。经过多次试验,发现以1 mL/h的出水速率作为吸力平衡的控制标准更为合理,即每1 h的排量小于样品体积的0.04%。

    图 3给出了不同细颗粒含量试样的SWCC试验结果。由于试验数据点略少,采用经典VG模型对测得的试验数据进行拟合,以研究土壤水分特征参数,实测数据及拟合曲线见图 3(a)~(c)

    图  3  实测数据及VG模型拟合的SWCC曲线
    Figure  3.  SWCCs fitted by measured data and VG model

    图 3可以看出,与粉质黏土等细粒土相比,粗粒堆积土的持水能力相对较弱,土体中的水可以在较小的气压下排出,土体中的基质吸力相对较小。然而,随着细粒土含量的增加,粗粒堆积土的持水能力不断增加,土壤的进气值也相应增加,即Sa3 > Sa2 > Sa1Sa1趋于0,未在图中展出。此外,随着细土含量的增加,土体的残余基质吸力也在增加,即ψ3 > ψ2 > ψ1,这也表明土壤的持水能力在增加,土体持水能力的提高必然会影响土体的变形和强度特性。

    目前,关于粗粒堆积土土水特征的研究很少,仅通过前人极其有限的研究结果[9]作为对比数据,验证本文试验数据的合理性。对比试验数据见图 4

    图  4  试验可靠性对比
    Figure  4.  Comparison of test reliability

    通过对比可以发现,尽管土颗粒的分布不同,但粗粒堆积土的土水分布特征曲线具有明显的相似性,基质吸力范围基本相同。随着粗粒堆积土不均匀系数的增加,相同基质吸力下的饱和度逐渐升高,表明土体持水能力不断提高。上述对比结果说明了实验数据的合理性,证明了利用该三轴仪器进行试验的可靠性。

    Arya-Paris模型[4]从土样土水特征曲线与颗分曲线的相似性出发,将土样视为由圆球状颗粒以及圆柱状孔隙组成的多孔介质,按照试样颗粒组成划定不同的粒组。将不同的颗粒分组视为若干等效粒径为Ri的相互独立的独立体,假设各独立体孔隙比与试样整体的孔隙比相同。各个独立体内的孔隙均为开口孔隙,并简化为毛细管通道。经此划分和简化后,结合一定合理化假设,即可求解土水特征曲线。具体过程可归纳为两条关键步骤:①通过求各组孔隙体积Vvi与总孔隙体积Vp的比值,推算各组孔隙充满水后的体积含水率θvi;②通过各组独立体颗粒个数ni和独立体孔隙半径ri,推算各级孔隙充满水后的基质吸力ψi

    综上所述,根据AP理论,在确定好试样颗粒级配后,就可以预测试样的土水特征曲线进行。具体过程可参见文献[17]。

    基于AP模型预测SWCC的过程中,考虑到土样理想孔隙和实际孔隙结构之间的差异,引入了一个经验参数α,将每个独立体中的理想球形颗粒数ni转化为更真实的niα。这一参数是决定AP模型预测土样土水特征曲线实际效果的关键,现对其进行探讨。

    关于α值,Arya[4]进行了大量测试后得出结论,α值在1.31~1.43,并建议取值为1.38,适用于大多数土体。随着对AP模型越来越深入的研究发现,α取恒定值并不合理。一些研究人员认为,α的值应符合土颗粒粒径越大,α值越大的规则。为了更加准确地预测土-水分布特征曲线,研究者提出了3种确定经验参数值的方法[10-11],即线性拟合方法、非线性拟合方法及θ函数法。

    图 5比较了基于非线性拟合方法、线性拟合方法以及θ函数法所确定的试样的SWCC曲线,对比结果总结如下:①通过θ函数法确定经验参数α的方式,最终预测得到的试样土-水特征曲线与实测值偏差最大。②对于常数α,当细粒土含量较低时,预测效果相对较好,但当细粒土含量增加时,常数取值的预测曲线与试验数据偏差较大,细粒土含量越高,偏差越大。③对于线性拟合方法得到的α,当细粒土含量较低时,预测效果并不理想。但当细粒土含量增加时,预测效果相对理想,细土含量越高,预测曲线越好。④对于非线性拟合方法得到的α,无论细粒土含量多少,预测曲线的方法都与试验数据吻合良好。因此,建议使用该方法预测粗粒堆积土的SWCC。

    图  5  基于不同α取值的SWCC预测
    Figure  5.  Prediction of SWCCs based on different values of α

    针对目前粗粒堆积土SWCC测试设备的缺乏和SWCC研究的不足,本文首先介绍了新开发的大型非饱和粗粒堆积土力学特性测试系统,并总结了粗粒堆积土SWCC的测试方法。然后分析了不同细粒土含量的粗粒堆积土SWCC的变化规律。最后,分析了不同α测定方法的AP模型对粗粒堆积土SWCC预测的影响,得到以下3点结论。

    (1)对于粗粒堆积土,建议以1 mL/h的出水速率作为更合理的吸力平衡控制标准,即每1 h排水量小于样品体积的0.04%。

    (2)对于粗粒堆积土,细粒土含量越高,迫使试样排水所需的空气压力越高(进气值越高),土体的残余基质吸力越高。这一规律意味着细粒土含量越高,粗粒堆积土的保水性能越好。

    (3)AP模型中关键参数α的确定方法,由非线性值得到的粗粒堆积土的SWCC曲线与试验数据最为吻合。建议使用该方法,预测粗粒堆积土的SWCC曲线。

  • 图  1   圆形基坑离心模型和监测布置

    Figure  1.   Centrifugal model for circular foundation pit and monitoring layout

    图  2   圆形闸门井基坑网格划分

    Figure  2.   Grid division of circular foundation pit with gate well

    图  3   圆形基坑地下连续墙侧向变形

    Figure  3.   Lateral deformations of diaphragm wall of circular foundation pit

    图  4   圆形闸门井基坑地表沉降

    Figure  4.   Surface settlements of circular foundation pit with gate well

    图  5   圆形基坑土压力变化情况图

    Figure  5.   Variation of soil pressure of circular foundation pit

    图  6   圆形闸门井地连墙X方向变形

    Figure  6.   Deformations of diaphragm wall of circular well gate in X direction

    图  7   闸门井地连墙侧向变形

    Figure  7.   Lateral deformations of diaphragm wall of gate well

    图  8   闸门井基坑X方向地表沉降曲线

    Figure  8.   Curves of surface settlement foundation pit with gate well in X direction

  • [1] 刘俊岩. 深基坑工程[M]. 北京: 中国建筑工业出版社, 2001.

    LIU Junyan. Deep Foundation Pit Engineering[M]. Beijing: China Architecture & Building Press, 2001. (in Chinese)

    [2] 王莹, 夏才初, 陈孝湘, 等. 基于离心试验下软黏土地区窄基坑稳定性分析[J]. 地下空间与工程学报, 2022, 18(6): 1853-1862, 1872.

    WANG Ying, XIA Caichu, CHEN Xiaoxiang, et al. Stability analysis of narrow foundation pit in saturated soft clay area based on centrifugal test[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(6): 1853-1862, 1872. (in Chinese)

    [3] 马险峰, 曹明洋. 上海软黏土深基坑在机开挖离心模型试验研究[J]. 土木工程学报, 2023, 56(8): 131-139.

    MA Xianfeng, CAO Mingyang. Centrifuge model tests on excavation in Shanghai soft soil layers using in-flight excavation tools[J]. China Civil Engineering Journal, 2023, 56(8): 131-139. (in Chinese)

    [4] 陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132-1138. doi: 10.11779/CJGE202006018

    CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132-1138. (in Chinese) doi: 10.11779/CJGE202006018

    [5] 郭海庆, 陶善之, 张泉. 基于离心机模型试验的超深基坑受力变形研究[J]. 地下空间与工程学报, 2020, 16(1): 177-186.

    GUO Haiqing, TAO Shanzhi, ZHANG Quan. Research on stress and deformation of super deep foundation pits based on the centrifugal model test[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 177-186. (in Chinese)

    [6] 冯志, 沈正龙, 孟庆亮, 等. 泵站深基坑支护结构的离心模型试验研究[J]. 水资源与水工程学报, 2019, 30(4): 183-188.

    FENG Zhi, SHEN Zhenglong, MENG Qingliang, et al. Centrifugal model test of supporting structure of pump station deep foundation pit[J]. Journal of Water Resources and Water Engineering, 2019, 30(4): 183-188. (in Chinese)

    [7] 王国辉, 陈文化, 聂庆科, 等. 深厚淤泥质土中基坑开挖对基桩影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.

    WANG Guohui, CHEN Wenhua, NIE Qingke, et al. Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests[J]. Rock and Soil Mechanics, 2020, 41(2): 399-407. (in Chinese)

    [8] 鲁泰山, 何欢, 刘松玉, 等. 基于SCPTU测试的软土基坑开挖数值模拟研究[J]. 土木工程学报, 2023, 56(增刊2): 141-148.

    LU Taishan, HE Huan, LIU Songyu, et al. Study on numerical simulation of soft soil foundation pit excavation based on SCPTU test[J]. China Civil Engineering Journal, 2023, 56(S2): 141-148. (in Chinese)

    [9] 张鹏, 邓智平, 王磊, 等. 基于Midas GTS的某近海深基坑开挖三维有限元数值模拟分析[J]. 甘肃科学学报, 2024, 36(1): 125-129.

    ZHANG Peng, DENG Zhiping, WANG Lei, et al. 3D finite element numerical simulation analysis of deep foundation pit excavation based on Midas GTS[J]. Journal of Gansu Sciences, 2024, 36(1): 125-129. (in Chinese)

    [10] 包承纲, 饶锡保. 土工离心模型的试验原理[J]. 长江科学院院报, 1998, 15(2): 1-3, 7.

    BAO Chenggang, RAO Xibao. Test principle of geotechnical centrifugal model[J]. Journal of Changjiang River Scientific Research Institute, 1998, 15(2): 1-3, 7. (in Chinese)

图(8)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  10
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 刊出日期:  2024-09-30

目录

/

返回文章
返回