Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于承载特性的挤扩支盘桩加固深厚软基作用机理研究

张坤标, 汪益敏, 陈页开, 丘燊, 易浩, 曾昭宇

张坤标, 汪益敏, 陈页开, 丘燊, 易浩, 曾昭宇. 基于承载特性的挤扩支盘桩加固深厚软基作用机理研究[J]. 岩土工程学报, 2024, 46(S2): 97-102. DOI: 10.11779/CJGE2024S20009
引用本文: 张坤标, 汪益敏, 陈页开, 丘燊, 易浩, 曾昭宇. 基于承载特性的挤扩支盘桩加固深厚软基作用机理研究[J]. 岩土工程学报, 2024, 46(S2): 97-102. DOI: 10.11779/CJGE2024S20009
ZHANG Kunbiao, WANG Yimin, CHEN Yekai, QIU Shen, YI Hao, ZENG Zhaoyu. Mechanism of reinforcement of squeezed branch piles for deep soft foundation based on load bearing capacities[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 97-102. DOI: 10.11779/CJGE2024S20009
Citation: ZHANG Kunbiao, WANG Yimin, CHEN Yekai, QIU Shen, YI Hao, ZENG Zhaoyu. Mechanism of reinforcement of squeezed branch piles for deep soft foundation based on load bearing capacities[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 97-102. DOI: 10.11779/CJGE2024S20009

基于承载特性的挤扩支盘桩加固深厚软基作用机理研究  English Version

基金项目: 

2021年度交通运输行业重点科技项目 2021-MS1-022

详细信息
    作者简介:

    张坤标(1995—),男,博士研究生,从事软基处理、路基边坡等研究。E-mail: ctzhangkunbiao@mail.scut.edu.cn

  • 中图分类号: TU473

Mechanism of reinforcement of squeezed branch piles for deep soft foundation based on load bearing capacities

  • 摘要: 针对深厚软土地基中挤扩支盘桩布置,结合汕头软基区挤扩支盘桩应用工程的单桩静载试验建立三维数值模型,探究了支盘桩在沉降过程中的荷载分担特点和盘-土相互作用机制。结果表明:未贯穿深厚软基的挤扩支盘桩桩端的荷载分担率远低于等截面直孔桩;挤扩支盘桩群桩效应系数ηg与桩体数目N和桩间距Sp密切相关,推荐桩间距Sp=8d为深厚软基区支盘桩的最优间距;支盘端部尤其下部支盘端部在极限沉降状态下分担大量荷载至盘周土体,盘净距Sb通过改变支盘结构持力土层性质而影响基桩承载能力。
    Abstract: To address the layout of squeezed branch (SB) piles in deep soft soil, a 3D numerical model is established based on the single pile static load tests on the SB pile application project in Shantou soft soil area. The load sharing characteristics and the branch-soil interaction mechanism are investigated during the settlement development. The results show that the load sharing ratio at the pile tip of the SB piles that do not penetrate through deep soft foundation is 19.6%, significantly lower than that of straight piles. The group efficiency ηg of the SB piles is correlated to the number of piles N and pile spacing Sp, with an optimal spacing of 8d recommended for the SB piles in deep soft soil regions. The tip of branch, particularly the lower branch, can transfer a considerable load to the surrounding soil under the ultimate settlement conditions. The inter-branch spacing Sb affects the load bearing of piles by altering the properties of soil stratum of branches.
  • 钙质砂是一种分布于热带海洋的特殊岩土介质,由于其成因和组构上的特殊性导致其工程力学性质与普通的陆源砂有明显区别。目前国内外针对钙质砂地基应力变化及破坏模式等研究很少,其工程特征及地基性能尚无明确统一的说法,这给基础设施的设计、施工建设带来很大的困难,因此需要研究钙质砂类岩土的应力特性和承载机理。

    钙质砂的应力特性,国内外已作了一些研究。文哲等[1]采用中国南沙某岛礁吹填珊瑚钙质砂,在级配和组分分析的基础上,研究不同密实度、含水率条件下轴向荷载钙质砂的剪切力学特性。王刚等[2]进行钙质砂不破碎三轴剪切过程的数值试验,以确定临界状态与固定级配的对应关系。相盈盈[3]采用三轴固结不排水剪切试验,对南海海区岛礁饱和钙质砂进行剪切特性分析。张季如等[4]为了研究不同应力路径对钙质砂的颗粒破碎和力学性质的影响,对不同固结压力的钙质砂进行了5种应力路径下的排水三轴压缩试验。Lade等[5]针对珊瑚砂的时间变量开展了三轴压缩试验,提出了应力下降原因。Yamamuro等[6]开展了钙质砂三轴排水试验,考虑了不同的围压状态和相对密实度,抗剪强度与轴向应变的变化规律。其他学者[7-9]对钙质砂的工程承载特性进行了部分研究。

    由以上研究可以发现,针对钙质珊瑚砂的力学工程特性性质已经已有一定基础,与其他砂类试验对比分析,结果显示钙质砂是一种天然特殊砂,钙质砂在高压条件下发生颗粒破碎,其破碎性质也会引起钙质砂的力学性质发生改变,其性质与普通砂存在很大差异,工程中不能使用普通砂的成果分析。目前有关三轴试验剪切速率的影响因素相关研究较少,本文在不同围压下采用不同剪切速率对高低围压下钙质砂进行三轴固结排水试验,分析围压、剪切速率对钙质砂应力影响分析。

    试验采用的试样取自中国海南省三沙市西沙群岛,试样中存在大块的砂砾和尖锐的贝壳,见图 1,为避免戳破橡胶膜影响试验,对原试样进行烘干、筛分、按一定比例进行配比后使用见图 2,试验筛除大于2 mm颗粒的钙质砂,将钙质砂分为9个粒径范围,不同粒径含量见表 1。颗粒级配见图 3,试验用钙质砂基本物理参数见表 2

    图  1  试样原样
    Figure  1.  Original sample
    图  2  试验试样
    Figure  2.  Test sample
    表  1  试样粒径范围
    Table  1.  Grain-size ranges of sample
    粒径/mm 1.45~2 1~1.45 0.71~1 0.5~0.71 0.355~0.5
    百分比/% 7 25 25 12 7
    粒径/mm 0.25~0.355 0.18~0.25 0.125~0.18 0.075~0.125
    百分比/% 5 4.5 4.5 10
    下载: 导出CSV 
    | 显示表格
    图  3  试样颗粒级配
    Figure  3.  Grain-size distribution curve of sample
    表  2  试样基本物理参数
    Table  2.  Basic physical parameters of sample
    GS emax emin D60/mm D30/mm D10/mm
    2.80 0.58 1.07 0.9 0.49 0.125
    下载: 导出CSV 
    | 显示表格

    试验采用英国GDS公司生产的自动三轴试验系统GDSTAS完成(图 4)。应变控制速率从0.00001~9.99999 mm/min。压力室最大承受压力为3.5 MPa,2 MPa孔隙水压力传感器精度为全量程的0.15%,内置水下荷重传感器精度为全量程的0.1%。3 MPa/ 200 mm3标准围压/体积控制器(围压控制),具有自动压力和体积溢出保护,测量精度为量测值的0.25%,压力精度为全量程的0.1%,体积变化测量和显示分辨率为1 mm3。3 MPa/200 mm3标准反压/体积控制器(反压控制),具有自动压力和体积溢出保护,测量精度为量测值的0.25%,压力精度为全量程的0.1%,体积变化测量和显示分辨率为1 mm3

    图  4  试验仪器
    Figure  4.  Test instruments

    试验方案如表 3所示。试验为三轴固结排水试验,试样相对密实度为70%,有效围压为300,600 kPa。剪切应变速率分别为0.15%,0.035%,0.0045%/min,研究钙质砂在不同围压、不同剪切速率下的应力变化特性。试样直径为50 mm,高度100 mm。

    表  3  试验方案
    Table  3.  Test schemes
    相对密实度Dr 有效围压/kPa 剪切应变速率/(%·min-1)
    0.70 300,600 0.0045,0.035,0.15
    下载: 导出CSV 
    | 显示表格

    试验采用干法制样,将配比好的试样按一定质量分层装入模具,因钙质砂的特性导致内部空隙较多,试验中利用CO2、水头饱和、反压饱和相结合的方法对试样进行饱和,提高试样的饱和度。首先从试样底部缓慢通入CO2,从试样顶部排出,通气时间为2 h,此过程置换试样内部的空气。然后水头饱和,从试样底部缓慢进水,从试样顶部排水,控制水流速度,时间为2 h,此过程置换试样中的CO2。最后进行反压分级饱和,并监测试样饱和度,直到饱和度大于95%。接下来进行试样固结,实时监测孔隙水压力变化,直到孔隙水压力消散,有效围压达到预定值。按照设定的剪切速率进行三轴排水试验,轴向位移达到20%试验停止。

    不同围压下各剪切速率的偏应力应变曲线,见图 5。偏应力曲线趋势相同,剪切初期偏应力上升较快,当应变超过5%时偏应力增长变缓,低围压下应变达到10%左右时偏应力出现峰值,高围压下应变达到12%左右时偏应力出现峰值,随后偏应力开始下降,高围压偏应力峰值出现的较晚。

    图  5  应力-应变
    Figure  5.  Stress-strain curves

    不同围压下剪切速率对峰值的影响规律相同,偏应力峰值随剪切速率的增大而增大,剪切速率越快应力峰值越大,应力下降也越快应力下降比越大,可见剪切速率对应力的峰值大小及残余剪切强度有一定影响。低围压下不同剪切速率最大偏应力峰值差比为11%,且在低围压约束力下剪切速率减小时试样颗粒发生重组后再剪切,因此速率0.035%,0.0045%/min的偏应力峰值软化后又会出现硬化趋势;高围压下不同剪切速率最大偏应力峰值差比为4%,可见低围压下剪切速率对偏应力峰值影响更大。这与福建标准砂的性质不同,周杰[10]对不同应力下福建标准砂进行5种剪切速率试验,表明在低应力下砂的抗剪强度与剪切速率基本无关,高围压下,砂的抗剪强度随剪切速度增大而减小。

    不同围压下各剪切速率的偏应力比曲线,见图 6。偏应力比曲线趋势相同先增大后减小趋于稳定。围压越小偏应力比上升越快、偏应力比越大,可见低围压下的剪切效果更明显,偏应力和峰值的变化情况相对于平均有效应力的变化更大,因为围压越低对颗粒束缚较小,钙质砂的越容易发生错动导致偏应力上升。应力应变分析中低围压下剪切速率越小时偏应力出现峰值然后减小有又硬化的趋势,因此在低围压下剪切速率越小偏应力比峰值后减小有又上升趋势。

    图  6  偏应力比
    Figure  6.  Deviatoric stress ratios

    相同围压下剪切速率越大,偏应力增长越快、偏应力比越大,剪切时砂粒之间重组排列,高剪切速度使得砂粒之间迅速咬合偏应力快速上升导致试样破坏,钙质砂的结构特征使得对剪切速率更加敏感。但是相对于0.15%/min的剪切速度,0.035%/min和0.0045%/min的速度偏应力比的变化几乎相同,可见当剪切速率低于一定速率时,偏应力比的变化并不受剪切速度的影响。

    固结排水试验的偏应力-平均有效应力曲线,见图 7。不同围压条件下,偏应力-平均有效应力关系曲线都是斜率为3的直线,是因为剪切时排水条件使得孔压保持稳定值不变,且围压为一定值,根据平均有效应力为p′=[2(σ3μ)+(σ1μ)]/3σ3为围压,σ1为轴向应力,μ为孔隙水压力,经计算相邻点有效应力变化为p′=(σ11σ12)/3,即为轴向应力差除以3,相邻点偏应力为q′=σ11σ12,即为轴向应力差,所以曲线斜率为q′/p′=3。

    图  7  应力路径
    Figure  7.  Stress paths

    不同剪切速率下的破坏线q′=Mp′趋势相同,由应力应变分析可以看出偏应力峰值随剪切速率的增大而增大,破坏线是关系偏应力峰值与圆点的连线,可见剪切速率越大破坏线角度越大,三条线的M值近似为1.75,由公式φ=arcsin(3M/(6+M))=42°,钙质砂的内摩擦角近似为42°。这由钙质砂的结构特性决定,钙质砂形状不规则且尖锐,颗粒之间咬合错动,剪切破坏角较大,内摩擦角较大。

    不同围压及剪切速率条件下,孔隙比-平均有效应力关系曲线,见图 8。偏应力峰值以前平均有效应力逐渐增大,偏应力峰值以后平均有效应力逐渐变小,且偏应力峰值以前不同围压下孔隙比相对于平均有效应力的下降速率相近呈线性变化,可见孔隙比与平均有效应力的变化趋势在剪切初始阶段不受剪切速率的变化影响。偏应力峰值以后孔隙比相对于平均有效应力变化呈曲线增大状态。

    图  8  孔隙比-平均有效应力
    Figure  8.  Porosity-average effective stress curves

    剪切过程中试样体积先减小后增大,孔隙比表现为先减小后增大,拐点发生在偏应力峰值的前后,剪切过程表现为密砂的特征。不同围压孔隙比下降速率相近,低围压剪缩阶段剪切速率对孔隙比的影响不明显,剪缩阶段颗粒之间位置调整砂粒发生相互错动重新排列压实,试样体积减小,孔隙比减小。剪胀阶段剪切速率对孔隙比的影响较大,剪切速率越大,孔隙比增大越快,随着剪切阶段颗粒间的作用力逐渐小于颗粒的抗剪强度试样破坏,尖利不规则的砂粒重新组合排列试样体积增大,孔隙比增大。

    本文开展了钙质砂三轴排水剪切试验速率对应力特性影响研究,分析不同围压、不同剪切速率状态下钙质砂剪切过程中应力的变化规律,得出以下4点结论。

    (1)偏应力应变曲线趋势相同,偏应力曲线均出现峰值,高围压偏应力峰值出现比低围压偏应力峰值出现的晚。剪切速率越快,偏应力峰值越大,偏应力下降越快,剪切速率对偏应力峰值大小及残余剪切强度有一定影响,低围压下剪切速率对偏应力峰值影响更大。

    (2)偏应力比应变曲线趋势相同先增大后减小趋于稳定。围压越小偏应力比上升越快,偏应力比越大,相同围压下剪切速率越大,偏应力比增长越快偏应力比越大。当剪切速率低于一定速度时,偏应力比的变化并不受剪切速度的影响。

    (3)不同围压下偏应力平均有效应力的关系是斜率为3的直线,不同速率下的破坏线趋势相同,偏应力峰值随剪切速率的增大而增大,破坏线是关系偏应力峰值与圆点的连线,因此剪切速率越大破坏线角度越大,破坏线的斜率近似为1.75,钙质砂内摩擦角近似为42°。

    (4)偏应力峰值以前平均有效应力逐渐增大,偏应力峰值以后平均有效应力逐渐变小,且偏应力峰值以前不同围压下孔隙比相对于平均有效应力的下降速率相近。低围压剪缩阶段剪切速率对孔隙比下降速率的影响不明显,剪胀阶段剪切速率越大,孔隙比的增长越大。

  • 图  1   支盘桩单桩静载试验图

    Figure  1.   Diagram of a single squeezed branch (SB) pile load tests

    图  2   挤扩支盘桩单桩静载试验结果及模型验证

    Figure  2.   Results and validations of single SB pile static load tests

    图  3   支盘桩载荷试验的几何及网格划分

    Figure  3.   Geometry and mesh of load tests on SB piles

    图  4   2×2直孔桩与支盘桩的归一化荷载沉降曲线对比

    Figure  4.   Comparison of normalized load settlement curves between 2×2 straight piles and SB piles

    图  5   62.5 mm沉降对应的桩端附近土体沉降云图

    Figure  5.   Settlement contours of soil element near pile tip corresponding to settlement 62.5 mm

    图  6   群桩效率系数ηg随桩体数目N变化

    Figure  6.   Variation of ηg with number of piles N

    图  7   群桩效率系数ηg随桩间距Sp变化

    Figure  7.   Variation of ηg with pile spacing Sp

    图  8   支盘结构周边剪应力τs变化

    Figure  8.   Variation of shear stress τs along branch structures

    图  9   支盘范围的有效主应力矢量图

    Figure  9.   Diagram of effective principal stress within branches

    表  1   有限元计算土体参数

    Table  1   Soil parameters for finite element calculations

    参数 耕填土 1淤泥质砂 0淤泥 1粉质黏土 4细砂 11淤泥质黏土 1粉质黏土 参考文献
    本构模型 HS SS SS HS HS SS HS [6]
    γ/(kN·m-3) 16.95 15.85 15.08 18 18.5 17.2 17.78 [2]
    e0 0.74 1.15 1.55 0.68 0.52 1.2 0.58
    E50ref/MPa 6.5 λ*=0.036
    κ*=0.007
    λ*=0.085
    κ*=0.017
    18.8 32 λ*=0.045
    κ*=0.009
    26.7 [26]
    Eoedref/MPa 6.5 18.8 32 26.7
    Eurref/MPa 29.4 73.3 105 112
    c/kPa 10 3 4 14 2 6 13 [27]
    φ/(°) 26 24 18 26 32 21 28
    注:HS为硬化土模型;SS为软土模型;γ为重度;Eoedref为参考切线模量;E50ref为参考割线模量;Eurref为参考卸载再加载模量;λκ分别为修正压缩指数和修正回弹指数;c为有效黏聚力;φ为有效内摩擦角。
    下载: 导出CSV

    表  2   设计工况及参数一览表

    Table  2   Overview of simulated conditions and parameter values

    工况 桩体数目N 桩间距Sp 直径比ξ 盘净距Sb
    桩数系列 2, 4, 6, 9 8d 2.5 8d, 14d
    桩间距系列 4, 9 5d, 6.5d, 8d, 9.5d, 11d 2.5 11d
    直径比系列 4 6.5d 2.0, 3.0 8d, 14d
    下载: 导出CSV

    表  3   估算群桩效率系数的经验公式

    Table  3   Empirical formulae for estimating group efficiency ηg

    公式 参考
    ηg=1arctan(d/Sp)90×[(n1)m+(m1)nmn] C-L法[10]
    ηg=1dπSpmn×[m(n1)+n(m1)+2(m1)(n1)] Das法[10]
    注:mn为多桩的行数和列数。
    下载: 导出CSV
  • [1] 李国维, 赵星宇, 张黎明, 等. 支盘桩加固既有填砂路基深层软土的模型试验研究[J]. 岩土工程学报, 2024, 46(8): 1768-1775. doi: 10.11779/CJGE20230277

    LI Guowei, ZHAO Xingyu, ZHANG Liming, et al. Model experiment on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. (in Chinese) doi: 10.11779/CJGE20230277

    [2] 易浩, 张坤标, 陈页开, 等. 软土地区挤扩支盘桩竖向承载特性研究[J]. 世界桥梁, 2021, 49(5): 79-86.

    YI Hao, ZHANG Kunbiao, CHEN Yekai, et al. Study of vertical bearing capacity of squeezed branch pile in soft soil area[J]. World Bridges, 2021, 49(5): 78-86. (in Chinese)

    [3]

    XIONG L, LI G W, ZHOU Y, et al. Experimental and analytical investigation of the bearing capacity of bulbs for squeezed branch pile[J]. International Journal of Geomechanics, 2023, 23(5): 04023045. doi: 10.1061/IJGNAI.GMENG-8298

    [4]

    LI T, PENG X, YANG G Q. Investigation into bearing performance of concrete expanded-plates piles: field test and numerical modelling[J]. Engineering Structures, 2022, 271: 114954. doi: 10.1016/j.engstruct.2022.114954

    [5]

    ZHANG M X, XU P, CUI W J, et al. Bearing behavior and failure mechanism of squeezed branch piles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(5): 935-946. doi: 10.1016/j.jrmge.2017.12.010

    [6]

    BRINKGREVE R, ENGIN E, SWOLFS W. PLAXIS 3D user manual[S]. Deflts, The Netherlands: PLAXIS Bv, 2020.

    [7] 李国维, 余彦杰, 熊力, 等. 陀螺桩垫层加强袋装砂井排水地基现场试验[J]. 岩土工程学报, 2021, 43(3): 425-431. doi: 10.11779/CJGE202103004

    LI Guowei, YU Yanjie, XIONG Li, et al. Field tests on top-shaped concrete block cushion-reinforced soft soil foundation drained with sand bag well[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 425-431. (in Chinese) doi: 10.11779/CJGE202103004

    [8]

    ALWALAN M, ALNUIAM A. Axial loading effect on the behavior of large helical pile groups in sandy soil[J]. Arabian Journal for Science and Engineering, 2022, 47: 5017-5031. doi: 10.1007/s13369-021-06422-9

    [9]

    CRISP M P, JAKSA M B, KUO Y L. Toward a generalized guideline to inform optimal site investigations for pile foundation[J]. Canadian Geotechnical Journal, 2020, 57(8): 1119-1129. doi: 10.1139/cgj-2019-0111

    [10]

    ATEŞ B, ŞADOĞLU E. Experimental investigation for group efficiency of driven piles embedded in cohesionless soil[J]. KSCE Journal of Civil Engineering, 2023, 27(12): 5123-5134. doi: 10.1007/s12205-023-1580-0

图(9)  /  表(3)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  7
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 刊出日期:  2024-09-30

目录

/

返回文章
返回