Experimental study on comparison of consolidation creep characteristics between silty sand and silty soil
-
摘要: 为了解释基坑预降水引发的基坑周边地面沉降的滞后性,依托某地铁车站基坑预降水工程,开展场地中典型粉砂和粉土的一维固结蠕变试验。通过试验结果分析,得到土的压缩指数、回弹指数和次固结系数,给出了回弹指数与压缩指数和次固结系数与压缩指数的经验关系。蠕变试验结果表明,粉砂和粉土的次固结系数与固结荷载之间呈现良好的线性关系,提出了次固结系数与固结压力的经验公式。从固结压力下砂土天然结构破坏的角度,解释了次固结系数随着固结压力的增加而增大的原因,为解释预降水引起的基坑周边地面沉降滞后效应和地面沉降合理估算提供了实验依据。Abstract: In order to explain the lagging settlement in the surrounding ground induced by pre-dewatering of excavations, one-dimensional consolidation creep tests are conducted on typical silty sand and silty soil at a metro station site of Jiangsu Province. Based on the experimental results, the compression index, rebound index and secondary consolidation coefficient of the soil are obtained, and the empirical relationships between the rebound index and the compression index, as well as the secondary consolidation coefficient and the compression index, are given. The results of the creep tests demonstrate a well-defined linear relationship between the secondary consolidation coefficient and the consolidation load for both the silty sand and the silty soil, leading to the development of an empirical formula correlating the secondary consolidation coefficient with consolidation pressure. Furthermore, the increase in the secondary consolidation coefficient with rising consolidation pressure is explained from the perspective of the natural structural breakdown of the sandy soil under consolidation pressure. These findings provide valuable experimental evidence for understanding the lagging effects of ground settlement around the excavations induced by pre-dewatering and for the rational estimation of ground settlement.
-
Keywords:
- silty sand /
- silty soil /
- creep /
- secondary consolidation coefficient /
- compression index /
- swell index
-
0. 引言
高桩码头是一种典型的沿海水工建筑物。高桩码头的岸坡在地震期间可能发生整体失稳、产生较大的侧向位移进而导致结构损坏。
在进行高桩码头抗震设计时,需对岸坡地震稳定性进行验算,并可采用拟静力法[1]开展。在拟静力分析方法中,地震引起的荷载通过等效静态水平力施加,边坡的拟静力地震稳定性常用临界地震系数表示。针对边坡拟静力地震稳定性问题,Sarma[2]在1973年提出了一种使用极限平衡法确定边坡临界地震系数的方法。Chang等[3]采用极限分析法,确定了平面和对数螺旋两种破坏机制下边坡临界地震系数的严格上限解。Sloan[4-5]基于有限元法将土体离散进行极限分析,并开发了适用于边坡稳定性分析的数值极限分析程序。Loukidis等[6]使用有限元极限分析方法,评估了地震作用下边坡的稳定性。
考虑排桩稳定效果的高桩码头岸坡稳定性分析可采用有限元方法开展,但其计算较为复杂。Ito等[7-8]使用塑性变形理论计算抗滑桩受到的极限侧向力,提出了多排抗滑桩边坡的设计方法。Lee等[9]基于非耦合公式,分别考虑桩的响应和边坡稳定性,使用简化Bishop法寻找边坡的临界滑动面。Hassiotis等[10]推广摩擦圆法,将反作用力纳入到边坡稳定性分析中,从而确定了边坡临界滑动面和安全系数。Ausilio[11]采用极限分析上限法分析抗滑桩边坡稳定性,得出了给定安全系数条件下所需抗滑力的理论表达式。
针对考虑排桩加固的高桩码头岸坡稳定性,使用梯形分布抗滑力考虑排桩对岸坡的稳定作用,假设临界破坏面为穿过坡脚的对数螺旋面,基于极限分析上限法推导了岸坡临界地震系数的表达式。通过变量优化,得到临界地震系数最小上限解和对应的临界破坏面。进一步地,采用强度折减法计算给定水平地震加速度下高桩码头岸坡的安全系数,并分析不同因素对岸坡地震稳定安全系数和破坏模式的影响规律。
1. 高桩码头岸坡临界地震系数
根据极限分析上限定理,对于任何假定的破坏机制,若外力功率超过内部能量耗散速率,则土体不能承受施加的荷载。
∫STividS+∫VXividV≤∫VσijϵijdV i,j=1,2,3。 (1) 式中:Ti为作用在边界S上的牵引力;Xi为作用在体积V上的体力;vi为运动学容许的速度场;εij为与vi相容的应变速率场;σij为与Ti和Xi相对应的应力场。
对岸坡地震稳定性的分析基于以下条件开展:土体为均质、各向同性;平面应变条件;拟静力地震荷载;土体服从莫尔-库伦破坏准则及关联流动法则。
使用极限分析上限法计算临界水平地震系数,假设破坏面为穿过坡脚的对数螺旋面,破坏面方程为
r=r0e(θ−θ0)tanφ。 (2) 式中:r为对数螺旋线的半径;φ为土体内摩擦角;r0为对数螺旋线与坡顶面相交处的半径;θ0和θ为r0和r与水平线的夹角。
建立岸坡地震稳定性极限分析模型,如图 1所示。水位线与坡顶平齐,岸坡坡高为H,坡角为β。土体的总重度和有效重度分别为γ和γ′。破坏时ABC区域的土体作为刚体绕点O以角速度ω旋转,L为滑动土体顶面宽度,参数θ0和θh用于确定滑动面的具体位置,θf1至θfn分别代表码头从近海侧到陆地侧的第i排桩在对数螺旋破坏机制中所处的位置(i=1, 2, ⋯, n)。最靠近坡脚的一排桩与坡脚的距离为l,桩间距为d。
破坏模式的几何关系如下:
Hr0=[sinθhe(θh−θ0)tanφ−sinθ0], (3) Lr0=sin(β+θ0)−e(θh−θ0)tanφsin(θh+β)sinβ, (4) r0e(θh−θ0)tanφcosθh+l=r0e(θf1−θ0)tanφcosθf1,······r0e(θh−θ0)tanφcosθh+l+(n−1)d=r0e(θfn−θ0)tanφcosθfn。 (5) 速度不连续面AC上能量耗散速率为
D=cr02ω2tanφ(e2(θh−θ0)tanφ−1)。 (6) 极限状态下,作用在排桩上的侧向力可由Ito等[7]提出的公式确定。排桩对单位宽度岸坡的反作用力可由排桩受力除以桩间距得到,故可将高桩码头岸坡稳定性问题简化为平面应变问题。将排桩对岸坡稳定作用等效为梯形分布力,表达为
p=αm(a+bz), (7) 式中:a和b为使用Ito等[7]提出的公式计算出的参数;αm为群桩抗滑力系数;z为计算点距地表的深度。
近海侧到陆地侧排桩在滑动面以上产生抗滑力的有效深度z1至zn分别为:
z1=r0e(θf1−θ0)tanϕsinθf1−r0e(θh−θ0)tanϕsinθh+ltanβ ,……zn=r0e(θfn−θ0)tanϕsinθfn−r0e(θh−θ0)tanϕsinθh+[l+(n−1)d]tanβ。 (8) 近海侧到陆地侧排桩的抗滑力做功功率Wf1至Wfn分别为:
Wf1=−ωαm{(az1+bz122)[r0e(θh−θ0)tanϕsinθh−ltanβ]+(az122+bz133)} ,……Wfn=−ωαm{(azn+bz2n2)[r0e(θh−θ0)tanφsinθh−[l+(n−1)d]tanβ]+(az2n2+bz3n3)}。 (9) ABC区滑动土体重力做功功率可由OAC、OBC和OAB区土体重力的功率(W1-W2-W3)得到:
W1=γ′r30ω3(1+9tan2φ){(3tanφcosθh+sinθh)e[3(θh−θ0)tanφ]−3tanφcosθ0−sinθ0}, (10) W2=γ′r30ω6Lr0(2cosθ0−Lr0)sinθ0, (11) W3=γ′r30ω6e[(θh−θ0)tanφ][sin(θh−θ0)−Lr0sinθh]⋅{cosθ0−Lr0+cosθhe[(θh−θ0)tanφ]}。 (12) ABC区域土体单位重力加速度的水平惯性力做功功率可同理可表示为(W4-W5-W6):
W4=γr30ω3(1+9tan2φ){(3tanφsinθh−cosθh)⋅e[3(θh−θ0)tanϕ]−3tanϕsinθh+cosθ0} , (13) W5=γr30ω6Lr0sinθ0sinθ0, (14) W6=γr30ω6e[(θh−θ0)tanφ][sin(θh−θ0)−Lr0sinθh]⋅{sinθ0+sinθhe[(θh−θ0)tanφ]}。 (15) 将内部能量耗散速率与外力做功的功率相等,可得到岸坡的临界地震系数kc。
kc=D−Wf1−……−Wfn−(W1−W2−W3)(W4−W5−W6)。 (16) 前述分析表明,临界地震系数kc中有n+2个未知参数θ0, θh, θf1, …, θfn。将式(5)中的n个几何关系作为非线性约束条件,对kc进行优化,从而得到临界地震系数kc的最小上限解和破坏模式参数θ0和θh。
2. 高桩码头地震稳定性极限有限元分析
2.1 计算案例
地震作用下高桩码头岸坡断面如图 2所示,水位与坡顶地表平齐,岸坡坡高H = 10 m,坡度为1∶2。高桩码头在垂直海岸线的方向上有四排桩,近海排桩与坡脚的距离为2.5 m,排桩间距为5 m。在平行海岸线方向上,桩间距D1 = 5 m,桩间净距D2 = 3.8 m。岸坡土的黏聚力c = 5 kPa,内摩擦角φ = 30°重度γ = 20 kN/m3。群桩抗滑力系数αm取0.5。
使用本文理论方法求出临界地震系数kc= 0.2521,对应的破坏面形态参数θ0 = 1.3763、θh = 1.9883。
2.2 计算结果
为验证本文方法所得结果的合理性,使用有限元极限分析软件OPTUM G2对案例进行计算。OPTUM G2通过网格自适应迭代技术来获得更为精确的上、下限解,有限元极限分析网格如图 3所示。
通过极限分析有限元上、下限分析计算得到的临界地震系数kc分别为0.2493和0.2473。将上、下限解平均值作为精确解的估计,本文理论方法与有限元极限分析结果误差约为1.2%,这表明本文理论方法在计算岸坡临界地震系数方面的有效性。岸坡在拟静力地震荷载作用下的破坏模式可根据极限分析有限元上限分析得到的剪切耗散云图确定。理论方法得到的对数螺旋破坏面与有限元极限分析得到的剪切耗散分布如图 4所示,可看到对数螺旋破坏面与剪切耗散集中区域接近重合,证明了假设的破坏机制的合理性。
为进一步验证本文理论方法的合理性,分析了不同桩间净距与桩间距之比D2/D1、土体强度指标c和φ条件下理论分析方法与极限分析有限元方法得到的临界地震系数kc,如表 1所示。从表 1可知,理论分析方法得到的临界地震系数kc略大于极限分析上限有限元解,与本文方法上、下限解平均值误差均为1%左右,表明采用本文理论分析方法所得的岸坡临界地震系数合理。
表 1 临界地震系数对比Table 1. Comparison of critical seismic coefficientsD2/D1 c/kPa φ/(°) kc 有限元下限解 有限元上限解 本文理论方法 0.76 5 30 0.2473 0.2493 0.2521 0.80 5 30 0.2269 0.2287 0.2303 0.84 5 30 0.2107 0.2122 0.2131 0.76 2.5 30 0.1722 0.1747 0.1760 0.76 7.5 30 0.3040 0.3061 0.3101 0.76 5 27.5 0.2164 0.2181 0.2201 0.76 5 32.5 0.2810 0.2837 0.2870 3. 岸坡地震稳定性影响因素分析
强度折减法被广泛应用于边坡稳定性分析中,其通过安全系数FS折减土体强度指标c和φ,直至边坡达到临界状态,安全系数与土体强度参数的关系为
FS=cc'=tanφtanφ', (17) 式中:c和φ为土体的黏聚力和内摩擦角,c'和φ'为折减后的黏聚力和内摩擦角。
为分析土体强度参数c,φ和影响抗滑力的排桩布置参数D2/D1对稳定性和临界破坏面的影响,在岸坡拟静力稳定性分析中,使用临界地震系数kc和0.15g水平地震作用下岸坡安全系数FS评估其抗震性能。
3.1 排桩布置影响
排桩抗滑力受桩间净距与桩间距之比D2/D1影响。分别计算不同D2/D1条件下岸坡临界地震系数kc和在0.15g水平地震加速度条件下的安全系数,桩间净距与桩间距之比D2/D1分别为0.84,0.80,0.76,0.72,0.68。得到D2/D1对岸坡稳定性影响如图 5所示,临界地震系数kc和安全系数FS随D2/D1增大而减小。
不同D2/D1对应的临界破坏面如图 6所示,图 6表明随着D2/D1增大,滑动土体在上部范围缩小而在中下部范围扩大,破坏面曲率增大,但D2/D1对破坏机制的影响并不显著。
3.2 黏聚力的影响
计算不同黏聚力条件下岸坡临界地震系数kc和在0.15g水平地震加速度条件下的安全系数FS,其中,土体黏聚力c分别为1,3,5,7,9 kPa。黏聚力c的影响如图 7所示,图 7表明kc和FS随黏聚力c增大呈非线性增大,且随着黏聚力c增大,kc和FS增长速率降低。
不同黏聚力c对应的岸坡破坏面如图 8所示,从图 8可知,随着黏聚力c增大,临界破坏面以上滑动土体的范围明显增大,这表明土体黏聚力对岸坡的破坏机制有较显著的影响。
3.3 内摩擦角的影响
计算不同内摩擦角的岸坡临界地震系数kc和在0.15g水平地震加速度条件下的安全系数FS,内摩擦角φ分别为25°,27.5°,30°,32.5°,35°,内摩擦角φ对岸坡地震稳定性的影响如图 9所示,图 9表明kc和FS均随内摩擦角增大而增大。
不同内摩擦角对应的临界破坏面如图 10所示。从图 10可知随着内摩擦角增大,滑动土体在岸坡中下部范围减小,对数螺旋面曲率减小。内摩擦角对岸坡临界破坏面形态的影响在三个因素中最小。
4. 结论
针对地震条件下高桩码头岸坡稳定性提出了一种理论分析方法,分析了高桩码头岸坡的破坏模式和安全系数及随主要因素的变化规律。
(1)将排桩对码头岸坡的稳定作用简化为梯形分布力,采用对数螺旋破坏机制推导出岸坡的临界地震系数,并确定临界地震系数的最小上限解和对应的临界破坏面,建立了适用于高桩码头岸坡地震稳定性的理论分析方法。
(2)采用提出的理论分析方法分析了一个高桩码头案例的临界地震系数和破坏机制,并与极限分析有限元结果进行对比,所得结果与有限元极限分析结果相符,验证了理论分析方法的合理性。
(3)采用建立的理论分析方法,分析得出排桩布置、黏聚力、内摩擦角等对临界地震系数和破坏机制的影响规律,并通过强度折减法计算0.15g水平地震加速度条件下岸坡的安全系数。
(4)高桩码头岸坡的临界地震系数和安全系数随桩间净距与桩间距之比增大而减小,随着土体黏聚力和内摩擦角增大而增大。桩间净距与桩间距之比、土体黏聚力和内摩擦角均影响岸坡的临界破坏模式,但土体黏聚力对破坏面模式的影响更明显。
-
表 1 土的物理力学参数
Table 1 Physical and mechanical parameters of soils
土名 含水率w/% 重度γ/(kN·m-3) 孔隙比e 压缩模量Es1-2/MPa 渗透系数k/(cm·s-1) 黏聚力*c/kPa 内摩擦角*φ/(°) 粉砂 27.4 19.6 0.724 11.57 500×10-6 7.9 31.8 粉土 34.3 18.6 0.940 8.37 50×10-6 12.2 28.5 表 2 试样的基本物理参数
Table 2 Basic physical parameters of samples
序号 土样编号 含水率w/% 干密度ρd/(kg·m-3) 天然重度γ/(kN·m-3) 孔隙比e 1 S2 - 1Con 30.3 1.58 18.1 0.704 2 S2 - 2Con 30.6 1.57 18.1 0.723 3 F2 - 1Con 33.4 1.42 19.0 0.902 4 F2 - 2Con 35.3 1.41 19.0 0.915 5 S7 - 1Cre 31.8 1.57 18.1 0.720 6 S7 - 2Cre 33.0 1.54 18.1 0.748 7 F7 - 1Cre 35.0 1.43 19.0 0.887 8 F7 - 2Cre 35.0 1.43 19.0 0.893 注:以S1 - 1Con为例说明试样编号,S代表土样为粉砂,F代表粉土,上标1-1代表第一种加载模式下第一个土样,下标Con为consolidation简写,代表固结试验,下标Cre为creep的简写,代表蠕变试验。 表 3 试验加载方案
Table 3 Loading schemes for tests
组号 土类 土样编号 试验方法 试验荷载/kPa 1 粉砂 S2 - 1Con S2 - 2Con 固结试验 50—400—50—400—800 2 粉土 F2 - 1Con F2 - 2Con 3 粉砂 S7 - 1Cre S7 - 2Cre 分级蠕变试验 100,200,400,800 4 粉土 F7 - 1Cre F7 - 2Cre 表 4 压缩指数和回弹指数
Table 4 Compression and rebound indices
土类 试样编号 Cc Cs 粉砂 S2 - 1Con 0.092 0.010 S2 - 2Con 0.090 0.010 粉土 F2 - 1Con 0.138 0.015 F2 - 2Con 0.156 0.014 表 5 次固结系数Ca
Table 5 Coefficients of secondary consolidation Ca
固结压力p/kPa 粉砂 粉土 SCre7-1 SCre7-2 FCre7-1 FCre7-2 100 0.0 013 0.0 014 0.0 024 0.0 023 200 0.0 016 0.0 018 0.0 025 0.0 025 400 0.0 019 0.0 021 0.0 036 0.0 027 800 0.0 029 0.0 029 0.0 039 0.0 036 -
[1] 张云, 薛禹群, 李勤奋. 上海现阶段主要沉降层及其变形特征分析[J]. 水文地质工程地质, 2003, 30(5): 6-11. doi: 10.3969/j.issn.1000-3665.2003.05.002 ZHANG Yun, XUE Yuqun, LI Qinfen. Current prominent subsidence layer and its deformation properties in Shanghai[J]. Hydrogeology and Engineering Geology, 2003, 30(5): 6-11. (in Chinese) doi: 10.3969/j.issn.1000-3665.2003.05.002
[2] 年廷凯, 余鹏程, 柳楚楠, 等. 吹填粉砂土固结蠕变试验及模型[J]. 吉林大学学报(地球科学版), 2014, 44(3): 918-924. NIAN Tingkai, YU Pengcheng, LIU Chunan, et al. Consolidation creep test and creep model of dredger fill silty sand[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3): 918-924. (in Chinese)
[3] TONG F, YIN J H. Nonlinear creep and swelling behavior of bentonite mixed with different sand contents under oedometric condition[J]. Marine Georesources and Geotechnology, 2011, 29: 346-363. doi: 10.1080/1064119X.2011.560824
[4] 张先伟, 王常明. 软土结构性对次固结系数的影响[J]. 岩土力学, 2012, 33(2): 476-482. doi: 10.3969/j.issn.1000-7598.2012.02.025 ZHANG Xianwei, WANG Changming. Effect of soft soil structure on secondary consolidation coefficient[J]. Rock and Soil Mechanics, 2012, 33(2): 476-482. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.02.025
[5] 张义德, 孙红, 牛富俊. 武汉软土次固结特性及其演变分析[J]. 甘肃科学学报, 2023, 35(6): 85-91. ZHANG Yide, SUN Hong, NIU Fujun. Analysis on characteristics and evolution of the secondary consolidation of Wuhan soft soil[J]. Journal of Gansu Sciences, 2023, 35(6): 85-91. (in Chinese)
[6] MESRI G, GODLEWSKI P M. Time-and stress- compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430. doi: 10.1061/AJGEB6.0000421
[7] MITCHELL J K, SOGA K. Fundamentals of Soil Behaviour[M]. 3rd ed. New York: John Wiley & Sons, 2005.
[8] KNAPPETT J A, CRAIG R F. Craig's Soil Mechanics[M]. 9th ed. New York: CRC Press, 2020.
[9] 余湘娟, 殷宗泽, 董卫军. 荷载对软土次固结影响的试验研究[J]. 岩土工程学报, 2007, 29(6): 913-916. doi: 10.3321/j.issn:1000-4548.2007.06.021 YU Xiangjuan, YIN Zongze, DONG Weijun. Influence of load on secondary consolidation deformation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 913-916. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.021