Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩节理系数及其与强度和变形特性的关系研究

孔洋, 阮怀宁, 张桂荣, 何宁, 汪璋淳

孔洋, 阮怀宁, 张桂荣, 何宁, 汪璋淳. 玄武岩节理系数及其与强度和变形特性的关系研究[J]. 岩土工程学报, 2024, 46(S1): 132-137. DOI: 10.11779/CJGE2024S10008
引用本文: 孔洋, 阮怀宁, 张桂荣, 何宁, 汪璋淳. 玄武岩节理系数及其与强度和变形特性的关系研究[J]. 岩土工程学报, 2024, 46(S1): 132-137. DOI: 10.11779/CJGE2024S10008
KONG Yang, RUAN Huaining, ZHANG Guirong, HE Ning, WANG Zhangchun. Joint factor of basalt and its relationship with strength and deformation characteristics[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 132-137. DOI: 10.11779/CJGE2024S10008
Citation: KONG Yang, RUAN Huaining, ZHANG Guirong, HE Ning, WANG Zhangchun. Joint factor of basalt and its relationship with strength and deformation characteristics[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 132-137. DOI: 10.11779/CJGE2024S10008

玄武岩节理系数及其与强度和变形特性的关系研究  English Version

基金项目: 

国家自然科学基金长江水科学研究联合基金项目 U2240221

国家自然科学基金重点项目 41831278

中央级公益性科研院所基本科研业务费专项资金项目 Y321003

详细信息
    作者简介:

    孔洋(1989—),男,山东宁阳人,博士,高级工程师,主要从事节理岩体力学特性与岩土工程安全监测等方面的科研工作。E-mail: ykong@nhri.cn

  • 中图分类号: TU452;TU458

Joint factor of basalt and its relationship with strength and deformation characteristics

  • 摘要: 节理密度、节理倾角与节理粗糙度情况等是控制玄武岩力学响应的三个关键因素。基于3D打印技术,通过开展单轴压缩与界面剪切试验,针对不同的模拟柱状节理玄武岩试样的破坏模式深入探究了特殊柱状节理的存在对玄武岩强度与变形的弱化作用,分析了节理系数与试样各向异性效应的关系。研究结果表明随节理系数的增大,模拟柱状节理玄武岩试样强度折减系数的线性减小程度及模量折减系数以指数关系式降低幅度受失效模式影响显著;强度各向异性效应与模量各向异性效应数值越大,表明柱状节理对玄武岩的岩块弱化作用越强;不同失效模式工况下,随节理系数的增加,强度各向异性效应线性增大,模量各向异性效应以指数关系式升高。研究成果可为工程岩体各向异性力学响应分析提供一定的技术支撑。
    Abstract: The joint density, joint inclination angle and joint roughness are the three key factors that control the mechanical response of basalts. Based on the 3D printing technology, the uniaxial compression and interfacial shear tests are carried out to deeply explore the weakening effects of the existence of special columnar joints on the strength and deformation of the basalts according to the failure modes of different columnar jointed basalt samples, and the relationship between the joint factor and the anisotropy effects of samples is analyzed. The research results show that with the increase of the joint factor, the linear reduction degree of the strength reduction coefficient and the exponential relation reduction degree of the modulus reduction coefficient of the simulated columnar jointed basalt samples are significantly affected by the failure mode. The larger the values of the strength anisotropy effects and modulus anisotropy effects, the stronger the weakening effects of columnar joints on basalt blocks. Under different failure modes, the strength anisotropy effects increases linearly with the increase of the joint factor, and the modulus anisotropy effects increase exponentially. The research results can provide some technical support for the anisotropic mechanical response analysis of engineering rock masses.
  • 传统的以混凝土为主要建筑材料的基坑支护技术,存在资源利用效率低、污染环境及支护结构遗留地下对后续工程造成障碍等问题。装配式、可回收技术符合国家绿色节能、低碳环保的发展理念,是基坑支护技术发展的重要方向[1-2]。支挡式结构是目前软土基坑支护的主要型式,早期可回收技术的研究主要针对单一结构构件,如可回收锚杆、型钢支撑等支锚构件和组合型钢等挡土构件[3-6],并通过模型和现场试验总结了相关可回收构件的受力变形规律[7-8]。在此基础上,可回收技术也逐渐实现从单一构件向空间体系的发展。随着全回收基坑支护的概念日益突出,中国工程建设标准化协会发布了《全回收基坑支护技术规程》,国内也陆续出台了相关地方标准,持续构建基坑支护技术的新发展格局和实践方向。

    本文研发了一种适用于软土的钢管锚锭板桩全回收基坑支护技术,并利用模型试验研究技术参数对基坑支护体系稳定性的影响,为构建其设计方法提供科学依据。

    钢管锚锭板桩全回收基坑支护体系由钢板桩、钢管桩、钢拉杆和钢腰梁等组成,如图 1所示,所有构件在基坑回填后均可实现回收。

    图  1  钢管锚锭板桩全回收基坑支护体系
    Figure  1.  Fully recoverable retaining system of sheet piles anchored by steel pipe piles for deep excavations

    钢板桩采用带有锁口的帽形型钢,锁口可以相互组合形成连续紧密的钢结构墙体(图 2(a));钢管桩作为锚锭构件,采用大直径圆形钢管(图 2(b));钢拉杆作为钢板桩和钢管桩之间的受力连接构件,与钢管桩一一对应;钢拉杆采用中空锚杆(图 2(c)),两端为螺纹锚头,利用螺母分别与钢板桩和钢管桩连接;钢腰梁作为钢拉杆与钢板桩之间的传力构件,可调节钢板桩均匀受力,采用双拼H型钢(图 2(d))。

    图  2  支护体系构件
    Figure  2.  Component parts of retaining system

    影响支护体系稳定性的因素除土体性质外,主要有管桩与板桩的间距、管桩的规格(长度、刚度、间距等)、板桩的规格(长度、刚度等)。因篇幅所限,本文主要探讨管桩与板桩的不同间距对支护结构变形的影响。

    模型试验用土取自青岛市上合示范核心区的海相软土,天然密度平均值为1.85 g/cm3,含水率平均值为34.5%,塑限和液限的平均值分别为16.6%和32.4%,塑性指数为15.8,属于淤泥质粉质黏土。

    模型板桩和管桩材料选用尼龙板和尼龙管,按相似理论确定模型尺寸。本试验以拉森Ⅳ型钢板桩和外径1 m、壁厚25 mm的钢管桩为原型,原型与模型的长度相似比为10。试验主要研究管桩和板桩受力后的弯曲变形及位移特点,因而考虑模型与原型的抗弯刚度(EI)相匹配。尼龙的重度γm=11.5 kN/m3,弹性模量Em=2.83 GPa,计算得模型板桩的厚度hm为17.0 mm,模型管桩的直径Dm=100 mm,壁厚tm为2.7 mm。拉杆采用直径4 mm的不锈钢棒,两端分别与尼龙板和尼龙管栓接。

    试验装置包括模型箱、加载系统及监测系统3部分组成。模型箱体内部净尺寸长3 m,宽1 m,高1.5 m。加载系统由气缸、加载板、反力架和空气压缩机组成(图 3)。

    图  3  模型箱与加载系统
    Figure  3.  Model box and loading system

    监测系统包括埋设模型地基内的孔隙水压力传感器、加载板位移传感器、微型薄膜土压力计,以及数字图像相关系统(简称DIC系统)和摄影测量分析设备(简称DPA设备)(图 4)。

    图  4  DIC系统和DPA设备
    Figure  4.  DIC system and DPA facilities

    管桩与板桩的间距L表 1所示。采用单根管桩时,管桩设置于模型箱的长轴中心线上;采用两根管桩时,管桩间距为300 mm,在模型箱的长轴中心线两侧对称布置。在满足试验边界条件的前提下,为减少试验工作量,同一个模型地基,在模型箱两端各实施一个基坑开挖试验,即A1与A4、A2与A3、B1与B2为同一个模型地基,试验布置如图 5图 6

    表  1  试验方案
    Table  1.  Test schemes
    试验编号 单管 双管
    A1 A2 A3 A4 B1 B2
    管桩与板桩间距L/mm 100 300 500 1000 300 500
    下载: 导出CSV 
    | 显示表格
    图  5  A1、A4组及A2、A3组模型试验布置图
    Figure  5.  Layout of model tests on case A1, A4 A2 and A3
    图  6  B1和B2组模型试验布置图
    Figure  6.  Layout of model tests on case B1 and B2

    (1)模型地基制作方法

    模型地基采用逐级加载固结的方式制作,前一级荷载作用下土体固结完成后施加下一级荷载。土体固结完成的判别标准是土体竖向变形速率小于2 mm/d且超静孔隙水压力基本消散。以原状土的天然密度(1.85 g/cm3)为目标值,通过预备试验确定首级荷载2 kPa、之后每级增加10 kPa至最终荷载70 kPa。

    (2)模型地基土的物理力学性质

    开挖试验结束后,在两个试验区交界附近,分别从模型地基深度20,50,90 cm处取样,进行密度、含水率、直接剪切和三轴不固结不排水剪切等试验。

    模型地基土的平均密度自上而下呈略微增大趋势,分别为1.84,1.86,1.87 g/cm3;平均含水率自上而下呈“C”字型规律分布,即上、下部排水条件较好,含水率略低于中部,中部含水率平均值(32.9%)在数值上与原状土的液限(32.4%)和天然含水率(34.5%)相近。

    模型地基土的各组平均抗剪强度指标,黏聚力cq为3.0~4.8 kPa、cUU为5.5~6.2kPa;内摩擦角φq为5.6~6.0°、φUU为2.3~3.9°。抗剪强度指标变异系数较小,均匀性较好,且与原状土试验指标接近。

    模型地基制作完成后,在预定的开挖区分层进行人工开挖,每层开挖深度为10 cm,直至基坑顶面发生明显变形、开裂破坏,或开挖深度达到50 cm。

    各组试验得到的基坑顶面破坏型式类似,A4和B2组试验的破坏情况见图 7。对A组(单管桩)试验,当两者间距为10 cm时,虽地表未出现贯通滑裂面,但板桩和管桩均发生明显变形,滑裂面位于管桩外侧;当间距增加为30 cm和50 cm时,在管桩附近地表出现贯通性滑裂线,表明桩间土形成局部塑性区并发展成贯通滑裂面;当间距增加至100 cm时,地表贯通性滑裂面出现在板桩与管桩之间,距离板桩约70~80 cm,与板桩后的朗肯主动土压力区宽度基本一致。对B组(双管桩)试验,其整体破坏规律与A组试验中管桩与板桩具有相同间距的试验结果相似。

    图  7  模型地基在基坑顶面的破坏状态
    Figure  7.  Failure states of model foundation at top of excavation

    图 8给出了A1和B1组试验中作用在板桩上的土压力变化规律。深度0.3 m处的两个土压力计监测的土压力值基本一致,初始土压力值与朗肯土压力计算的静止土压力值基本一致,土压力值随着开挖深度的增加而减小,对应从开挖前静止土压力到开挖后主动土压力的转变。深度0.7 m位于开挖深度范围下,初始土压力值亦与静止土压力计算值接近,土压力值则随着开挖深度的增加而增加,主要与板桩刚度较小、沿竖向反弯变形挤压土体有关。

    图  8  土压力变化规律
    Figure  8.  Variation of earth pressure

    桩顶位移随开挖深度的增加而逐渐增大,当开挖深度较小时接近线性变化,在水平位移突变后仍有一定承载和抗变形能力,总体符合双曲线变化规律,拟合优度系数R2均大于0.9(如图 9)。双曲线拟合式中位于分子的拟合参数反映了极限开挖深度,而位于分母的拟合参数则反映了双曲线趋于渐近线的速率。试验结果显示,A1和A4组的极限开挖深度基本一致,A2和A3组基本一致,而B1和B2组(双管桩)的极限开挖深度基本一致且大于管桩和板桩间距相同条件下A2和A3组(单管桩)的结果,表明极限开挖深度和管桩与板桩间距有关,当管桩与板桩间距超过某范围时,两者间距越大,同等开挖深度条件下支护体系变形越小。此外,极限开挖深度与管桩间距成反比,管桩间距越小,同等条件下极限开挖深度越大。同时,对管桩顶部水平位移的监测数据表明,当土体发生较大变形至破坏时,管桩发生整体倾斜。

    图  9  管桩顶部位移实测值
    Figure  9.  Measurement of displacement at top of pipe pile

    图 10给出了利用DPA设备获得的A1和B1组试验中的板桩顶部水平位移。板桩顶部的水平位移随开挖深度的增加而逐渐增大,在水平方向上,由于管桩的锚锭作用,对A组(单管桩),其值以拉杆位置为对称轴,左右近似对称分布,与拉杆距离越远位移越大,呈“V”型分布且随开挖深度增加而愈加明显。对B组(双管桩),其值以两根拉杆的中心线为对称轴,左右近似对称分布。同时,B组的桩顶位移明显小于A组,管桩间距直接影响作用在板桩上的土压力,且整体刚度的增加也有利于位移控制。

    图  10  板桩顶部位移实测值
    Figure  10.  Measurement of displacement at top of sheet pile

    将各组试验中管桩与板桩的桩顶(拉杆处)水平位移汇总比较,如图 11所示,计算管桩与板桩水平位移的相关系数r为0.96,属显著性相关。

    图  11  管桩与板桩的位移比较
    Figure  11.  Comparison of displacements between pipe piles and sheet piles

    各组试验中管桩与板桩的变形虽然受开挖深度、施工工序等影响,但通过拉杆作用,拉杆两端的实测位移总体相差较小,两者变形具有一致性。因此,在设计中可通过增加拉杆刚度,减小两者之间的变形差。

    (1)管桩的锚拉对结构位移具有显著限制作用。管桩顶部最大水平位移与开挖深度成双曲线关系。双管桩条件下的板桩位移明显小于单管桩条件下的结果,即增加板桩单位宽度内的管桩数量可以有效减小支护体系的位移。

    (2)模型地基的变形破坏形式与管桩至板桩的间距有关。两者间距较近时,主动滑裂面的发展受到管桩限制,沿管桩位置滑裂。两者间距足够远时,滑裂面沿与板桩距离开挖深度约1.5倍的地表滑裂。

    (3)管桩与板桩顶部的位移总体相差较小,两者的变形具有一致性。设计中可将两者的变形协调做为假定条件,以求解杆件体系力学平衡微分方程。

  • 图  1   不同柱体倾斜角度的节理网络三维模型示意图

    Figure  1.   Schematic diagram of three-dimensional model for columnar joint network with different inclination angles

    图  2   模拟柱状节理玄武岩试样与界面剪切试验试样示意图

    Figure  2.   Schematic diagram of columnar jointed basalt samples and interfacial shear test samples

    图  3   典型轴向应力-应变曲线

    Figure  3.   Typical axial stress-strain curves

    图  4   强度、模量折减系数各向异性曲线

    Figure  4.   Anisotropy curves of reduction coefficient of strength and modulus

    图  5   强度折减系数、模量折减系数与节理系数的关系曲线

    Figure  5.   Relationship curves between reduction coefficients of strength and modulus and joint factor

    图  6   强度各向异性效应、模量各向异性效应与节理系数关系曲线

    Figure  6.   Relationship curves between strength and modulus anisotropy effects and joint factor

    表  1   不同柱体倾斜角度的模拟柱状节理玄武岩试样节理系数计算结果

    Table  1   Calculated results of joint factor for simulated columnar jointed basalt samples with different inclination angles

    β/
    (°)
    100 mm Jn/m-1 n r Jf/m-1
    等效为1 m 本文 U型 肩型 本文 等效 本文
    0 0.82 0.85 2.04 0.715
    15 4 40 31 0.29 0.40 0.39 0.715 142.77 111.96
    30 6 60 61 0.05 0.06 0.33 0.715 256.23 258.81
    45 8 80 86 0.20 0.29 0.33 0.715 340.48 364.77
    60 10 100 105 0.46 0.80 0.57 0.715 243.87 255.98
    75 12 120 117 0.73 0.93 1.21 0.715 139.14 135.75
    90 12 120 121 0.95 0.98 1.00 0.715 167.83 169.52
    下载: 导出CSV
  • [1]

    XIAO W M, DENG R G, ZHONG Z B, et al. Experimental study on the mechanical properties of simulated columnar jointed rock masses[J]. Journal of Geophysics and Engineering, 2015, 12(1): 80-89. doi: 10.1088/1742-2132/12/1/80

    [2] 柯志强, 王环玲, 徐卫亚, 等. 含横向节理的柱状节理岩体力学特性试验研究[J]. 岩土力学, 2019, 40(2): 660-667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902028.htm

    KE Zhiqiang, WANG Huanling, XU Weiya, et al. Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints[J]. Rock and Soil Mechanics, 2019, 40(2): 660-667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902028.htm

    [3]

    ZHANG T, XU W Y, WANG H L, et al. Anisotropic strength, deformability, and failure behavior of artificial columnar jointed rock masses under triaxial compression[J]. Journal of Materials in Civil Engineering, 2023(3): 1-14.

    [4]

    QUE X C, ZHU Z D, NIU Z H, et al. Deformation and strength anisotropy of columnar jointed rock mass with different cross-sectional shapes[J]. Rock and Soil Mechanics, 2021, 42(9): 2416-2426.

    [5]

    RAMAMURTHY T, ARORA V K. Strength predictions for jointed rocks in confined and unconfined states[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(1): 9-22.

    [6]

    SINGH M, RAO K S, RAMAMURTHY T. Strength and deformational behaviour of a jointed rock mass[J]. Rock Mechanics and Rock Engineering, 2002, 35(1): 45-64. doi: 10.1007/s006030200008

    [7]

    JI H, ZHANG J C, XU W Y, et al. Experimental investigation of the anisotropic mechanical properties of a columnar jointed rock mass: observations from laboratory-based physical modelling[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1919-1931. doi: 10.1007/s00603-017-1192-4

    [8]

    LIN Z N, XU W Y, WANG H L, et al. Anisotropic characteristic of irregular columnar-jointed rock mass based on physical model test[J]. Ksce Journal of Civil Engineering, 2017, 21(5): 1728-1734. doi: 10.1007/s12205-016-1796-3

    [9] 肖维民, 邓荣贵, 邹祖银. 柱状节理岩体各向异性强度准则研究[J]. 岩石力学与工程学报, 2015, 34(11): 2205-2214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511004.htm

    XIAO Weiming, DENG Ronggui, ZHOU Zuyin. Anisotropic strength criterion for columnar jointed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2205-2214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511004.htm

    [10] 宗学文, 周升栋, 刘洁, 等. 光固化3D打印及光敏树脂改性研究进展[J]. 塑料工业, 2020, 48(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGY202001006.htm

    ZONG Xuewen, ZHOU Shengdong, LIU Jie, et al. Research progress in photo-curing 3D printing and photosensitive resin modification[J]. China Plastics Industry, 2020, 48(1): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLGY202001006.htm

    [11] 孔洋, 阮怀宁, 汪璋淳. 玄武岩脆性类岩石相似模型材料比选与力学特性测试研究[J]. 岩土工程学报, 2023, 45(11): 2308-2318. doi: 10.11779/CJGE20220984

    KONG Yang, RUAN Huaining, WANG Zhangchun. Study on selection and mechanical properties testing of similar brittle rock-like model materials of basalts[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2308-2318. (in Chinese) doi: 10.11779/CJGE20220984

    [12]

    LIN Z N, XU W Y, WANG W B, et al. Determination of strength and deformation properties of columnar jointed rock mass using physical model tests[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3302-3311.

    [13]

    GHAZVINIAN A, HADEI M. Effect of discontinuity orientation and confinement on the strength of jointed anisotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 8(10B): 7143-7156.

图(6)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 刊出日期:  2024-07-31

目录

/

返回文章
返回