• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
姚玮, 俞缙, 周先齐, 常方强, 常旭. 循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性[J]. 岩土工程学报, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
引用本文: 姚玮, 俞缙, 周先齐, 常方强, 常旭. 循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性[J]. 岩土工程学报, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
Citation: YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053

循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性

Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading

  • 摘要: 为探究深地工程开挖诱导岩体损伤破裂及渗透性演化规律,开展了同步测定波速与渗透率的循环加载与卸围压组合扰动三轴试验,研究了不同条件下红砂岩的损伤与渗透性演化规律。结果表明:①岩石在不同组合扰动阶段具有不同的应力应变曲线形态,其末端形态取决于在何种扰动阶段破坏,初始应力比为决定组合扰动诱发岩石破坏难易的主要因素;②总峰值轴向应变随初始应力比增大而增大,其中组合扰动轴向应变占比始终较低,总峰值体积应变绝对值随初始应力比增大而先增大后减小,其中组合扰动体积应变占比较高;③在初始加载阶段,波速增大,渗透率降低,在组合扰动阶段,波速下降,渗透率增加,且损伤与体积应变近似呈线性关系,损伤与渗透率随扰动次数增加均呈先慢后快的增长趋势,且拐点分别近似在一条直线上;④岩石在组合扰动卸围压阶段破坏为单剪切破坏模式,在组合扰动循环加载阶段破坏为共轭剪切破坏模式;⑤双高(高初始应力比与高初始围压)条件将显著加剧岩体开挖失稳破坏风险。

     

    Abstract: To explore the rules of rock mass damage and permeability evolution induced by excavation of deep earth engineering, the triaxial tests under combined disturbance of cyclic loading and confining pressure unloading for simultaneous measurement of wave velocity and permeability are conducted. The damage and permeability evolution rules of red sandstone under different conditions are studied. The results show that: (1) The rock exhibits different stress-strain curve shapes at different stages of combined disturbance, and their end shapes depend on at which stage of disturbance the rock is failed. The initial stress ratio is the main factor to determine the difficulty of rock failure induced by the combined disturbance. (2) The total peak axial strain increases with the increase of the initial stress ratio, and the proportion of axial strain of the combined disturbance is always low. The absolute value of the total peak volume strain increases first and then decreases with the increase of the initial stress ratio, and the proportion of disturbance volume strain the combined is high. (3) At the initial loading stage, the wave velocity increases, and the permeability decreases. In the combined disturbance stage, the wave velocity decreases and the permeability increases. The damage and volume strain are approximately linearly related, and both the damage and permeability show a slow and then fast growth trend with the increase of disturbance times, and the inflection point seems to be on a straight line. (4) The rock exhibits a single shear failure mode at the combined disturbance unloading confining pressure stage, and a conjugate shear failure mode at the combined disturbance cyclic loading stage. (5) The double-high condition (high initial stress ratio and high initial confining pressure) will significantly increase the risk of excavation instability and failure of rock.

     

/

返回文章
返回