Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

堰塞坝漫顶溃决离心模型试验研究

张露澄, 钟启明, 杨蒙, 彭铭, 刘嘉欣

张露澄, 钟启明, 杨蒙, 彭铭, 刘嘉欣. 堰塞坝漫顶溃决离心模型试验研究[J]. 岩土工程学报, 2023, 45(S1): 197-200. DOI: 10.11779/CJGE2023S10029
引用本文: 张露澄, 钟启明, 杨蒙, 彭铭, 刘嘉欣. 堰塞坝漫顶溃决离心模型试验研究[J]. 岩土工程学报, 2023, 45(S1): 197-200. DOI: 10.11779/CJGE2023S10029
ZHANG Lucheng, ZHONG Qiming, YANG Meng, PENG Ming, LIU Jiaxin. Centrifugal model tests on overtopping-induced breaching of landslide dams[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 197-200. DOI: 10.11779/CJGE2023S10029
Citation: ZHANG Lucheng, ZHONG Qiming, YANG Meng, PENG Ming, LIU Jiaxin. Centrifugal model tests on overtopping-induced breaching of landslide dams[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 197-200. DOI: 10.11779/CJGE2023S10029

堰塞坝漫顶溃决离心模型试验研究  English Version

基金项目: 

国家自然科学基金区域创新发展联合基金重点项目 U22A20602

国家自然科学基金长江水科学研究联合基金重点支持项目 U2040221

中央级公益性科研院所基本科研业务费专项资金项目 Y320005

水利部土石坝破坏机理与防控技术重点实验室开放基金项目 YK321001

详细信息
    作者简介:

    张露澄(1995—),男,博士研究生,主要从事土石坝溃坝灾害风险评估方面的研究工作。E-mail: zhanglc@nhri.cn

    通讯作者:

    钟启明, E-mail: qmzhong@nhri.cn

  • 中图分类号: TV698

Centrifugal model tests on overtopping-induced breaching of landslide dams

  • 摘要: 基于南京水利科学研究院400g·t溃坝离心模型试验系统,利用其高速旋转产生的超重力场的“时空放大”效应,开展离心模型试验研究了堰塞坝漫顶溃决时的溃口演化规律和溃决机理。首次通过离心模型试验研究了坝高、下游坡比、坝料级配对堰塞坝漫顶溃坝过程的影响。试验结果表明:堰塞坝漫顶溃坝过程可划分为表层冲刷、溯源冲蚀、沿程侵蚀和溃口稳定4个阶段;溃口峰值流量对坝高最为敏感,平均粒径次之;达峰时间主要受下游坡比影响,溃坝后相对残余坝高主要受平均粒径影响。
    Abstract: Based on the 400 g·t centrifugal model test system for dam breaching of Nanjing Hydraulic Research Institute, the centrifugal model tests are carried out to study the breach evolution law and breach mechanism of overtopping-induced breaching of landslide dams by using the "time-space amplification" effect of supergravity field generated by high-speed rotation. The effects of dam height, downstream slope ratio and dam material gradation on the overtopping failure process of landslide dams are investigated by the centrifugal model tests for the first time. The test results show that the breach process of a landslide dam can be divided into four stages, which are surface erosion, retrogressive erosion, erosion along the breach channel, and breach stabilization. Moreover, the peak breach flow is most sensitive to the dam height, followed by the mean particle size. The time to the peak is mainly affected by the downstream slope ratio, and the relative residual dam height after breaching is primarily susceptible to the mean particle size.
  • 非饱和状态下的土体具有很高的强度[1],然而遇水湿化强度会迅速降低,局部可能达到饱和,该状态下的土压力值与非饱和条件下的值差别很大。多名学者统计显示大部分基坑事故都与水有关,此外,2019年6月8日南宁绿地中心基坑塌陷也是因为场地管道爆裂,非饱和土遇水湿化,作用在支护结构的土压力增大[2]。因此,亟需定量评估浸湿作用对非饱和土侧向土压力的影响,提出计算方法,减少此类事故发生。

    目前,对非饱和土压力研究获得了很大进展,但现有研究多从理论出发进行公式推导,1961年Coleman等[3]提出双变量理论,Fredlund便得到净应力与吸力的双变量理论,之后得到了扩展的朗肯土压力理论,但是在平时的设计和研究中,仍然采用朗肯土压力理论[4]计算非饱和土压力。姚攀峰等[5]提出了与扩展型朗肯土压力不同的计算方法广义朗肯土压力计算方法,陈铁林等[6]解决水位变化及降水条件下的土压力计算问题,根据K0定义推导K0求解式。任传健等[7]结合Fredlund非饱和土抗剪切与强化准则和经典的朗肯土压计算公式,得出考虑降水变化的土压计算公式。汪丁建等[8]在饱和土朗肯土压力分析基础上,推导出降雨条件下非饱和朗肯土压力。王晓亮等[9]将降雨和蒸发对基质吸力的影响引入到非饱和土抗剪强度公式中,得到K0随降雨定性变化,但没有定量结果。

    已有的大量研究充分表明水对静止土压力的影响不可忽略,但已有的计算公式复杂不实用,结果有待验证。导致现有非饱和土体仍采用饱和土理论的计算结果加安全储备来设计计算[10],安全系数是否足够不明确。为了使湿化条件下静止土压力增量的演化规律更明确,本文通过室内试验确定了其相关的变化规律、建立相应的计算模型,减小对安全施工的威胁。

    取北京延庆地区原状粉质黏土进行烘干、碾碎、过0.25 mm筛备用,进行基本物理性质测试,依据《土工试验方法标准:GB/T50123—2019》[11],结果见表 1

    表  1  土的基本物理性质
    Table  1.  Basic physical properties of soil
    最大干
    密度/
    (g·cm-3)
    最优含水率/% 液限
    wL/%
    塑限wP/% 塑性指数IP 土粒相对密度GS
    1.80 16.5 30.7 15.2 15.5 2.73
    下载: 导出CSV 
    | 显示表格

    选择干密度1.53 g/cm3(压实度0.85)、高度40 mm的标准环刀试样开展K0压缩试验,设5个不同的初始饱和度与4个不同的上覆荷载,具体方案见表 2

    表  2  浸水条件下非饱和粉质黏土试验方案
    Table  2.  Test schemes under water immersion conditions
    上覆荷载/kPa 加载过程 初始饱和度
    100/200/
    300/400
    100(200/300/400)kPa→湿化→逐级加载至1600kPa 0.2/0.3/0.4/
    0.5/0.6
    下载: 导出CSV 
    | 显示表格

    (1)仪器标定。本文采用JCY型K0固结仪来完成K0压缩试验,在气囊中充入与试样等体积的水,利用水各向等压特性标定仪器在竖向压力下对土压力的测量,根据试验数据拟合得到两仪器的标定系数[12]

    (2)制样并养护得到不同初始含水率试样。用饱和再风干的土样模拟经过了干湿循环的天然非饱和土,通过7 d密闭养护保证孔隙水分布均匀,见图 1

    图  1  准备不同初始含水率的试样
    Figure  1.  Preparation of samples with different initial moisture contents

    (3)加上覆荷载待稳定后进行湿化饱和,湿化稳定后养护7 d,再完成后续设定加载至试验结束。

    (4)卸压并整理仪器装置,将不同初始饱和度湿化前与湿化压缩后试样进行对比,如图 2所示。

    图  2  试验前后对比图
    Figure  2.  Comparison of soil samples before and after tests

    K0固结仪连接压力传感器采集数据,得到侧压力随时间变化关系[12],从而得到粉质黏土在5个不同初始饱和度Sr和4个不同上覆荷载P作用下发生湿化与湿化后继续加载的水平静止土压力-竖向压力的关系曲线,见图 3,因篇幅关系只展示Sr=0.2结果[12]。对于非饱和土一般采用水土合算计算土压力,此时侧压力传感器测量得到的相当于水土合算下的土压力。

    图  3  静止土压力随竖向压力变化关系(Sr=0.2)
    Figure  3.  Variation of static earth pressure with vertical pressure (Sr=0.2)

    湿化静止土压力增量Δσh统计见表 3,计算式为

    Δσh=σwσd (1)
    表  3  湿化静止土压力增量计算值统计
    Table  3.  Statistics of calculated increment static earth pressure
    初始饱和度Sr 0.2 0.3 0.4 0.5 0.6
    100 kPa下增量值 35.14 25.10 17.41 12.5 3.53
    200 kPa下增量值 68.95 48.38 33.32 22.97 6.31
    300 kPa下增量值 95.01 68.95 47.86 29.99 8.98
    400 kPa下增量值 118.02 90.00 60.99 35.97 10.11
    下载: 导出CSV 
    | 显示表格

    式中:σd为上覆荷载作用下湿化前静止土压力大小;σw湿化饱和后静止土压力大小。

    不同初始饱和度湿化过程的增湿水平不同,可使用湿化前初始饱和度表示增湿水平,即:Sr=1的增湿水平为0,Sr越小增湿水平越大。

    表 3可以看到湿化时静止土压力都有不同程度的增大,且初始饱和度Sr越低或上覆荷载P越大,静止土压力增量越大。图 3数据显示,湿化后继续加载呈线性且斜率基本一致,表明K0值大小近似一致,SrP的不同不会影响湿化饱和后K0大小。可能原因是:静止土压力系数主要由有效内摩擦角决定,饱和后有效内摩擦角接近,因此湿化饱和后K0近似一致。

    土体强度理论认为土颗粒间存在综合作用,包括吸力、胶结作用、德华力以及化学键等[4],非饱和土研究学者[13]一般认为土骨架受压为保证完整性依靠两部分力平衡:一是土颗粒间的基质吸力,取决于土体的含水量;另外是土颗粒间的胶结力,取决于土体内部的黏粒微量物质。静止土压力增量是由颗粒间胶结作用的减弱和基质吸力减小两方面原因引起的[14]。为推导计算模型引出中间变量0.65-Sr,如图 4所示,初始饱和度越小,湿化导致基质吸力减少量就越大,静止土压力增量就越大;湿化饱和后上覆荷载越大,对土体胶结力破坏就越大,如图 5所示,湿化饱和后的静止土压力增量,随上覆荷载增加而变大。

    图  4  静止土压力增量与初始饱和度关系
    Figure  4.  Variation of increment of static earth pressure increment with initial saturation
    图  5  静止土压力增量与上覆荷载关系
    Figure  5.  Variation of increment of static earth pressure with load

    土压力增量Δσh与上覆荷载P,初始饱和度Sr都呈线性关系,双线性模型见式(2),PSr确定时有一次函数式(3),(4)。当变量n=Sr+b1=0.65Sr时,土压力增量Δσhn成正比例,k1k2m为斜率,见图 4

    Δσh=k1n×k2m (2)
    k1n=k1Sr+b1 (3)
    k2m=k2P+b2 (4)

    P与其对应的k1k2m拟合得k1k2m = 0.60P+19.76,再将n代入式(2)中,得到式(5)。当初始饱和度Sr较大接近饱和土时,静止土压力增量为0,观察式(5),当饱和度Sr>0.65时,湿化不会引起静止土压力增加。

    Δσh={(0.60P + 19.76)(0.65Sr)(Sr0.65)0 (Sr>0.65) (5)

    为了更直观的表现增量的含义,将ΔSr=1Sr代入式(5),得到最终的增量表达式如下:

    Δσh={(0.60P+19.76)(ΔSr0.35)(ΔSr0.35)0(ΔSr<0.35) (6)

    以延庆某深基坑为背景,结合勘察数据,对上文的模型进行试算。该基坑开挖深度23 m,上表面有8 kPa的均布荷载,施工阶段饱和度0.25,已勘测到自然地面以下34 m地层特性,土体基本为粉质黏土。

    根据划分土层的重度与厚度计算出土层下表面荷载,并根据K0算出湿化前静止土压力σhiK0按经验值取0.3。根据式(6)算出静止土压力增量Δσhi,接着计算出湿化后静止土压力σwiσwi/σhi比值,计算值随深度变化绘制在图 6中,发现比值随深度增大而减小,但始终大于1.8,说明湿化对静止土压力影响较大。

    图  6  不同累计深度处静止土压力与其相关计算值关系
    Figure  6.  Static earth pressures and their correlation with depth

    由于本文采用重塑土进行试验,和天然土体湿化时侧压力变化结果不同,特别是黄土等结构性非饱和土,其湿化可能发生湿陷等行为,导致土压力演化较为复杂。本文研究结果仅适用于非结构性的非饱和土。

    本文通过开展室内试验,定量评估浸湿作用对非饱和土侧向土压力的影响,实测浸湿饱和作用下静止土压力增量的变化规律,建立相应的计算模型,通过应用发现设计时必须重视湿化的影响,并得到以下3点结论。

    (1)湿化饱和后,土体的静止土压力系数K0值与初始饱和度、上覆荷载无关。推测土体静止土压力系数K0值主要由有效内摩擦角决定,饱和后有效内摩擦角基本一致,故K0值大小近似一致。

    (2)湿化前的初始饱和度越低,湿化饱和后的静止土压力增量越大;且湿化饱和后的静止土压力增量,随湿化时的上覆荷载增加而变大。

    (3)基于试验数据和机理分析,得到了湿化条件下考虑上覆荷载与初始饱和度的双线性土压力增量计算模型;将其应用于某支挡工程,发现湿化后的土压力可达初始土压力1.8倍以上,设计时必须予以重视。

  • 图  1   溃坝离心模型试验系统

    Figure  1.   Centrifugal model test system for dam breaching

    图  2   模型箱及孔压传感器布置

    Figure  2.   Model box and arrangement of pore pressure sensors

    图  3   试验坝料级配曲线

    Figure  3.   Grain-size distribution curves of dam materials

    图  4   溃坝各阶段典型坝体图像

    Figure  4.   Typical dam images of each stage of dam breaching

    图  5   工况4溃口演化过程和溃口流量过程

    Figure  5.   Breach evolution process and breach flow discharge process of Condition 4

    表  1   常用物理量相似准则

    Table  1   Similarity criteria of common physical quantities

    物理量 加速度 长度 面积 体积 应力
    相似比(模型/原型) N 1/N 1/N2 1/N3 1
    物理量 孔隙比 密度 质量 流量 时间
    相似比(模型/原型) 1 1 1/N3 1/N2 1/N
    下载: 导出CSV

    表  2   4种工况参数设定

    Table  2   Parameter settings of four conditions

    工况 坝高/mm 下游坡比 d50/mm
    1 250 1∶3 5
    2 350 1∶3 5
    3 250 1∶5 5
    4 250 1∶3 1
    注:d50为级配平均粒径。
    下载: 导出CSV

    表  3   4种工况溃坝参数对比

    Table  3   Comparison of dam breach parameters of four conditions

    工况 影响因素 峰值流量/(m3·s−1) 变化幅度/% 达峰时间/min 变化幅度/% 相对残余坝高/% 变化幅度/%
    1 11.4 18.9 66.4
    2 坝高 18.6 +62.6 16.1 -14.8 55.4 -16.5
    3 坡比 9.5 -16.6 24.5 +30.0 75.2 +13.3
    4 级配 17.8 +56.0 13.4 -29.0 47.2 -28.9
    注:变化幅度表示与工况1相比,各溃坝参数的增量。
    下载: 导出CSV
  • [1] 钟启明, 陈生水, 王琳. 堰塞湖致灾风险评估技术及应用[M]. 北京: 科学出版社, 2021.

    ZHONG Qiming, CHEN Shengshui, WANG Lin. Risk Assessment Technology and Application of Dammed Lake Disaster[M]. Beijing: Science Press, 2021. (in Chinese)

    [2]

    ZHONG Q M, WANG L, CHEN S S, et al. Breaches of embankment and landslide dams-State of the art review[J]. Earth-Science Reviews, 2021, 216: 103597. doi: 10.1016/j.earscirev.2021.103597

    [3]

    MEI S Y, CHEN S S, ZHONG Q M, et al. Effects of grain size distribution on landslide dam breaching—insights from recent cases in China[J]. Frontiers in Earth Science, 2021, 9: 658578. doi: 10.3389/feart.2021.658578

    [4]

    ZHENG H C, SHI Z M, SHEN D Y, et al. Recent advances in stability and failure mechanisms of landslide dams[J]. Frontiers in Earth Science, 2021, 9: 659935. doi: 10.3389/feart.2021.659935

    [5]

    SHEN D Y, SHI Z M, PENG M, et al. Longevity analysis of landslide dams[J]. Landslides, 2020, 17(8): 1797-1821. doi: 10.1007/s10346-020-01386-7

    [6]

    ZHOU G G D, LI S, LU X Q, et al. Large-scale landslide dam breach experiments: Overtopping and "overtopping and seepage" failures[J]. Engineering Geology, 2022, 304: 106680. doi: 10.1016/j.enggeo.2022.106680

    [7]

    ZHU X H, LIU B X, PENG J B, et al. Experimental study on the longitudinal evolution of the overtopping breaching of noncohesive landslide dams[J]. Engineering Geology, 2021, 288: 106137. doi: 10.1016/j.enggeo.2021.106137

    [8]

    PENG M, MA C Y, CHEN H X, et al. Experimental study on breaching mechanisms of landslide dams composed of different materials under surge waves[J]. Engineering Geology, 2021, 291: 106242. doi: 10.1016/j.enggeo.2021.106242

    [9] 陈生水, 钟启明. 土石坝溃坝数学模型及应用[M]. 北京: 中国水利水电出版社, 2019.

    CHEN Shengshui, ZHONG Qiming. Numerical Models for Earth-Rock Dam Breaching and Their Applications[M]. Beijing: China Water & Power Press, 2019. (in Chinese)

    [10]

    WAN C F, FELL R. Investigation of rate of erosion of soils in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 373-380. doi: 10.1061/(ASCE)1090-0241(2004)130:4(373)

  • 期刊类型引用(0)

    其他类型引用(1)

图(5)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-05
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回