• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水域CPTU与DMT在土体强度特性评价中的应用

张国超, 余颂, 张军杰, 张荣, 王勇

张国超, 余颂, 张军杰, 张荣, 王勇. 水域CPTU与DMT在土体强度特性评价中的应用[J]. 岩土工程学报, 2023, 45(S1): 180-184. DOI: 10.11779/CJGE2023S10017
引用本文: 张国超, 余颂, 张军杰, 张荣, 王勇. 水域CPTU与DMT在土体强度特性评价中的应用[J]. 岩土工程学报, 2023, 45(S1): 180-184. DOI: 10.11779/CJGE2023S10017
ZHANG Guochao, YU Song, ZHANG Junjie, ZHANG Rong, WANG Yong. Evaluation of strength characteristics of soils based on piezocone penetration tests and flat dilatometer tests in water areas[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 180-184. DOI: 10.11779/CJGE2023S10017
Citation: ZHANG Guochao, YU Song, ZHANG Junjie, ZHANG Rong, WANG Yong. Evaluation of strength characteristics of soils based on piezocone penetration tests and flat dilatometer tests in water areas[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 180-184. DOI: 10.11779/CJGE2023S10017

水域CPTU与DMT在土体强度特性评价中的应用  English Version

基金项目: 

水域多功能CPTU平台研发及工程应用 2022D16

国家自然科学基金项目 51979269

国家重大科研仪器研制项目 52127815

详细信息
    作者简介:

    张国超(1986—),男,硕士,高级工程师,主要从事岩土工程勘察工作。E-mail:928975960@qq.com

  • 中图分类号: TU43

Evaluation of strength characteristics of soils based on piezocone penetration tests and flat dilatometer tests in water areas

  • 摘要: 基于多元原位测试数据融合的研究方法在岩土工程勘察中已成为趋势,在提高预测参数精度和评价土体强度特性中具有明显优势。为解决水域工程勘察中取样困难、岩土参数空间变异性大、土体力学特性存在区域性和结构性的难题,以江苏省海太过江通道工程为研究对象,基于水域孔压静力触探试验CPTU、水域扁铲侧胀试验DMT和室内土工试验,研究了场区软黏土的不排水剪切强度、砂性土的内摩擦角以及不同土性指标土层的侧限模量。结果表明:CPTU和DMT均可提供丰富的土体物理力学参数,对土体的强度特征参数响应灵敏,联合2种试验的参数表征土体强度特性具有可行性;基于CPTU锥尖阻力、净锥尖阻力得到砂性土有效内摩擦角偏大,而基于DMT侧胀水平应力指数KD得到的有效内摩擦角略小;DMT侧限模量与CPTU锥尖阻力之间具有良好的相关关系,通过拟合关系式可将刚度与强度联系起来,该关系式还考虑了土性指标的影响,可作为一种新方法来预测土体侧限模量。
    Abstract: In geotechnical engineering investigation, the multivariate in-situ test data fusion method has become the research trend, and it has obvious advantages in improving the accuracy of parameters and the evaluation of strength characteristics of soils. In order to solve the problems of sampling difficulty, spatial variability of geotechnical parameters, and regional and structural mechanical properties of soils in geotechnical engineering investigation in water areas, the Haimen-Taicang Changjiang River crossing project in Jiangsu Province is taken as the research object. Based on the piezocone penetration tests (CPTU), flat dilatometer tests (DMT) and laboratory tests, the undrained shear strength of soft clay, internal friction angle of sandy soil and constrained modulus of layers with different material indices are studied. The results show that both the CPTU and the DMT can provide abundant soil parameters, which are sensitive to the strength characteristics of soils, and it is feasible to characterize the strength of soils using the parameters from the two experiments. The calculated results based on the CPTU tip resistance and the net tip resistance overestimate the effective internal friction angle of sandy soil, while that approximated by KD is slightly smaller. There is a good correlation between the DMT constrained modulus and the CPTU tip resistance. The stiffness and strength can be linked by fitting their relationship, which also considers the influences of the material indices, and this relationship can be used as a new method to estimate the constrained modulus.
  • 由于海底地震动的记录严重缺乏,导致海底隧道的地震响应研究进展较为缓慢,尤其是在理论研究方面。很多跨海结构(跨海大桥、海底隧道)在做抗震分析时,采用的地震记录多为陆地地震记录,这显然是不合理的。因此,一些学者尝试着用数值方法来分析海底隧道的地震响应及其相关的影响因素[1-7],在研究过程中多未考虑水-土-结构动力相互作用,得到的成果和理论尚不充分。Ma等[8]采用“大圆弧假定”处理水土交界面处边界条件,利用波函数展开法尝试给出平面P波在水下输水隧洞周围散射问题的解析解,但计算模型中的水下土体视作单相介质。而Stoll等[9]建立水层-流体饱和多孔介质模型,证实了水下土层假定为饱和土的合理性。“大圆弧假定”是一种近似解析方法,在求解过程中,大宗量Bessel函数收敛较慢[10],导致场地内散射波的求解存在误差累积,从而使得半空间表面零应力被放松[11]。由此,从数学精度角度出发,“大圆弧假定”方法不再能充分满足半空间边界条件。朱赛男等[12-13]和Li等[14]均采用Hankel函数积分变换法对入射波作用下海底洞室和衬砌隧道地震响应进行研究,该方法可以有效地将场地中的柱坐标系下的散射波直接转换到直角坐标系下,避免了“大圆弧假定”方法的使用,同时分析了入射波特性、场地条件和隧道埋深等因素对隧道场地地震响应的影响。

    上述对海底隧道抗震问题的研究主要集中在海底单层衬砌隧道场地。海底隧道的外衬砌为隧道的主要承重结构,内衬砌主要起到辅助作用。地震作用下的海底隧道周围海床土可能发生液化现象,促使隧道周围孔隙水压力急剧增加[15],进而增加隧道渗水和上浮的可能性,对海底隧道的安全性造成影响。而由内外衬砌组合而成的双层衬砌可以提高整个结构的耐久性、防水性能和抗浮性能[16]。日本首先在工程实际上建设双层衬砌隧道,如东京湾水底隧道,建造时间已超过20 a[17]。已有的研究结果表明,提高衬砌结构刚度、设置减震层均可有效地达到抗震和减震作用[18]。在双层衬砌隧道场地中,地震波会被设置的隔震层部分吸收,从而使得衬砌的应力集中减小[19]。对此,有学者建立双层衬砌理论模型,对双层衬砌隧道的地震响应进行研究。Ding等[20]利用波函数展开法对P波入射下饱和土半空间中复合式衬砌隧道的抗震性能进行研究。采用相同的方法,Fan等[18]给出平面SV波作用下饱和土半空间中含缓冲层衬砌隧道散射问题的解析解,并重点分析缓冲层对隧道动应力集中系数的影响。Zhao等[21]建立考虑岩石-衬砌接触面的非线性特性的最终衬砌-初始衬砌-围岩复合衬砌隧道模型,对SH波作用下复合衬砌隧道地震响应进行研究。

    从研究成果可以看出,关于海底双层衬砌隧道地震响应的研究成果鲜见报导。鉴于此,本文基于理想流体介质波动理论和Biot流体饱和多孔介质波动理论,建立海水-海床土-双层衬砌隧道结构动力相互作用模型。利用Hankel函数积分变换法,给出P1波作用下考虑海水-海床土-隧道结构相互作用的海底双层衬砌隧道地震响应的解析解,并分析内外衬砌刚度比和内外衬砌厚度比等因素对隧道位移响应和应力响应的影响。

    海底双层衬砌隧道场地模型如图 1所示。水层视为理想流体介质[22],水深为hw。饱和土层为流体饱和多孔介质。双层衬砌隧道埋置在饱和土层中,由内衬砌和外衬砌组成,外衬砌位于饱和土与内衬砌之间。隧道埋深h,外衬砌外半径a,外衬砌内半径b,内衬砌内半径c。内外衬砌、水土交界面和水层表面分别采用直角坐标系(x1,y1)(x,y)(x2,y2)。其中,内外衬砌也可采用柱坐标系(r1,θ1)。上述各坐标系间的关系见文献[12]。

    图  1  场地模型
    Figure  1.  Analysis model

    海水层为理想流体,其波动方程见文献[2324];海床土的波动方程可采用Biot[25]提出的流体饱和多孔介质的波动方程;海底隧道的双层衬砌均为单相介质,其波动方程见文献[10]。

    海底双层衬砌隧道场地模型中的边界条件有水层自由表面、水土交界面、外衬砌-饱和土交界面、内-外衬砌交界面和内衬砌临空面。为考虑海水-海床土-隧道结构动力相互作用,对海底双层衬砌隧道场地模型的边界条件做以下假设:①水土交界面透水,外衬砌-饱和土界面不透水;②水土交界面、外衬砌-饱和土界面和内-外衬砌界面的应力和位移均连续。上述场地中边界条件的表达式可分别见文献[2423161826]。

    设入射波P1波的频率和入射角分别为ωθa1,波幅系数为1。该入射波在直角坐标系(x,y)下势函数表达为:

    ϕ(I)=eika1(xsinθa1+ycosθa1)eiωt
    (1)

    式中,ka1为P1波波数。场地中每个波的势函数均有时间因子eiωt,为书写方便,后续均忽略此项。

    场地不存在隧道时,场地为自由场。入射波入射下,水土交界面处产生反射波(P1波、P2波和SV波),水层中产生P波(上行P波和下行P波)。这些波的势函数的表达式可见文献[14]。

    由于场地中海底双层衬砌隧道的存在,入射波P1波的作用下的隧道附近、水土交界面处、水层、外衬砌、内衬砌均会产生散射波。其中,隧道附近和水土交界处的散射波均属饱和土中的散射波。

    (1) 饱和土层中散射波场

    隧道附近的散射P1波、P2波和SV波的势函数和水土交界面附近产生的散射P1波、P2波和SV波的势函数均见参考文献[1214]。

    从场地模型中可以看出,水层自由表面和水土交界面处边界条件是在直角坐标系下建立的,上述散射波势函数是在柱坐标系(r1,θ1)下建立的,此时将柱坐标系下的散射波势函数直接代入边界条件进行计算显然是不合理的。在以往的饱和土半空间中的隧道对地震波散射问题的研究中,多采用“大圆弧假定”方法,该方法具有很大的局限性。

    本文采用Hankel函数积分变换法,饱和土中的散射波势函数均可转换到直角坐标系下,转换方法和具体表达式见文献[1214],避免了传统地震波散射问题所采用的“大圆弧假定”。

    (2) 水层中散射波场

    参考直角坐标系下的饱和土中散射波势函数表达,水层中散射波势函数表达式可直接写出,具体见文献[1214]。

    (3) 外衬砌中的散射波场

    由于隧道外衬砌的存在,外衬砌中会产生发散型散射P波ϕ(s)l1和SV波ψ(s)l1,及汇聚型散射P波ϕ(r)l1和SV波ψ(r)l1ϕ(s)l1ϕ(r)l1ψ(s)l1ψ(r)l1的势函数表达式见文献[26]。

    (4) 内衬砌中的散射波场分析

    同样,由于内衬砌的存在,内衬砌中也会产生发散型散射P波ϕ(s)l2和SV波ψ(s)l2,及汇聚型散射P波ϕ(r)l2和SV波ψ(r)l2ϕ(s)l2ϕ(r)l2ψ(s)l2ψ(r)l2的势函数表达式见文献[26]。

    自由场中的波和散射波场中的波的求解方法可见文献[14]和文献[26],此处不再赘述。

    在后续计算分析时,定义无量纲频率η

    η=ωaπ μs/ρs
    (2)

    式中,μs为饱和土的拉梅常数,ρs为饱和土的密度。

    定义ACl1r=|ul1r|/|u0|ACl1θ=|ul1θ|/|u0|分别为隧道外衬砌的径向位移和环向位移放大系数,PPCF = |σl1, f|/|σ0|DSCF1 = |σ11θ|/|σl10|分别为外衬砌的孔压集中系数和动应力集中系数。DSCF2 = |σ12θ|/|σl20|为内衬砌的动应力集中系数。其中,u0=ka1σ0 = μk2bσ120 = μ2k2l2, b

    为验证本文中解的正确性,内外衬砌设为相同材料,此时外衬砌海底隧道模型可看成为海底单层隧道模型,具体退化方法见文献[26]。采用本文解计算得到外衬砌的孔压集中系数(PPCF)和动应力集中系数(DSCF1),并将计算结果与朱赛男[12]得到的相同条件下海底单层衬砌隧道衬砌厚度δ=0.15a时衬砌的孔压集中系数(PPCF)和动应力集中系数(DSCF1)进行对比。

    图 2给出P波以η = 0.25θa1=30°入射下采用本文解得到的外衬砌的孔压集中系数(PPCF1)和动应力集中系数(DSCF1)与文献[12]中衬砌隧道孔压集中系数(PPCF)和动应力集中系数(DSCF1)的对比。从图 2中可以看出,两种模型的孔压集中系数和动应力集中系数基本一致,从而验证了本文P1波在海底双层衬砌隧道附近散射问题的解析解的准确性。

    图  2  海底双层衬砌隧道退化海底单层衬砌隧道
    Figure  2.  Undersea double-layer lining tunnel degraded to single-layer one with perfect contact

    本文为研究双层衬砌对海底隧道地震位移响应和应力响应的影响,在分析中,取隧道埋深h/a=2,水深hw/a=5,饱和土参数和内外衬砌参数见文献[26]。

    (1) 内外衬砌刚度比的影响

    图 3给出P1波以无量纲频率η=0.5和入射角θa1=30°入射时,不同的内外衬砌刚度比(E2/E1)条件下,隧道拱顶(θ1=90°)和左侧拱腰(θ1=180°)外衬砌径向位移和环向位移分布情况。从图中可以看出,内外衬砌刚度比对左侧拱腰处的位移影响较小。E2/E1=0时,表示海底隧道为单层衬砌,该条件下隧道拱顶处的径向位移明显大于双层衬砌情况,而环向位移相差不大。这也说明,双层衬砌的存在可以有效地减小海底隧道位移响应,尤其是径向位移。此外,在内外衬砌刚度比E2/E13时,内外衬砌刚度比对隧道各处的位移影响不再明显。

    图  3  内外衬砌刚度变化对隧道位移的影响
    Figure  3.  Influences of stiffness on displacement of tunnel

    图 45分别给出P1波以无量纲频率η=0.5和入射角θa1=30°入射时,不同的内外衬砌刚度比(E2/E1)条件下,隧道外衬砌处的动应力集中系数(DSCF1)、孔压集中系数(PPCF)和内衬砌动应力集中系数(DSCF2)分布情况。从图 4中可以出,在其他条件相同的情况下,双层衬砌隧道的动应力集中系数和孔压集中系数明显小于单层衬砌隧道条件。同时,可以发现,随着内外衬砌刚度比的增加,隧道外衬砌动应力集中系数和孔压集中系数有减小趋势。同时,在图 5中可以发现,内衬砌动应力集中系数随着内外衬砌刚度比的增加而明显增加。这和内外衬砌刚度比对饱和土中双层衬砌隧道减震效果是一致的[27]

    图  4  内外衬砌刚度变化对外衬砌应力的影响
    Figure  4.  Influences of stiffness on PPCF and DSCF1 around outer lining
    图  5  内外衬砌刚度变化对内衬砌应力的影响
    Figure  5.  Influences of stiffness on DSCF2 around inner linings

    综合内外衬砌刚度比对地震作用下的海底双层衬砌隧道位移响应和应力响应的影响,内外衬砌刚度比的选择建议E2/E13

    (2) 内外衬砌厚度比的影响

    图 6给出P1波以无量纲频率η=0.5和入射角θa1=30°入射时,不同的内外衬砌厚度比(δ2/δ1)条件下,隧道拱顶(θ1=90°)和左侧拱腰(θ1=180°)外衬砌径向位移和环向位移分布情况。从图中可以看出,内外衬砌厚度比的变化对左侧拱腰处的位移影响与内外衬砌刚度比一样,影响均较小。δ2/δ1=0时,表示海底隧道为单层衬砌,该条件下隧道环向位移数值与海底双层衬砌情况相近,而海底单层衬砌隧道拱顶的径向位移大于双层衬砌隧道。此外,随着内外衬砌厚度比的增加,隧道拱顶和左侧拱腰的径向位移均减小。在内外衬砌厚度比δ2/δ12后,内外衬砌厚度比对隧道径向位移的影响甚微。这和饱和土中双层衬砌隧道内外衬砌厚度比对隧道动应力集中的影响规律是一致的[27]

    图  6  内外衬砌厚度变化对隧道位移的影响
    Figure  6.  Influences of thickness on displacement of tunnel

    图 78给出P1波以无量纲频率η=0.5和入射角θa1=30°入射时,不同的内外衬砌厚度比(δ2/δ1)条件下,隧道外衬砌处的动应力集中系数(DSCF1)、孔压集中系数(PPCF)和内衬砌动应力集中系数(DSCF2)分布情况。从图 78中可以出,随着内外衬砌厚度比的增加,外衬砌动应力集中系数(DSCF1)、外衬砌孔压集中系数(PPCF)和内衬砌应力集中系数(DSCF2)均减小。对比图 78可以发现,内外衬砌厚度比对隧道内衬砌应力响应的影响较外衬砌动应力响应明显。同时,结合内外衬砌对海底双层衬砌隧道位移响应和应力响应的影响,建议海底双层衬砌隧道内外衬砌厚度比为δ2/δ12

    图  7  内外衬砌厚度变化对外衬砌应力的影响
    Figure  7.  Influences of thickness on PPCF and DSCF1 around outer linings
    图  8  内外衬砌厚度变化对内衬砌应力的影响
    Figure  8.  Influences of thickness on DSCF2 around inner linings

    本文将海水和海床土分别视为理想流体和饱和土,利用Hankel函数积分变换法和波函数展开法,给出海底双层衬砌隧道对入射P1波的散射问题的解析解,并对内外衬砌刚度比和内外衬砌厚度比对海底双层衬砌隧道响应进行研究,进而对海底双层衬砌隧道抗减震参数提出建议。

    (1) 地震作用下双层衬砌可以有效地减小海底隧道的位移响应和应力响应。

    (2) 隧道外衬砌应力响应随着内外衬砌刚度比和厚度比的增加而减小。

    (3) 综合内外衬砌刚度比对隧道位移响应和应力响应影响,海底双层衬砌隧道抗减震设计时,隧道内外衬砌刚度比和衬砌厚度比的选取范围分别建议为E2/E13δ2/δ12

  • 图  1   海太过江隧道地质剖面图

    Figure  1.   Geological profile of Haimen-Taicang Changhiang River crossing project

    图  2   孔压静力触探试验多重套管技术(D为外径)

    Figure  2.   Multiple casing for CPTU (D is outer diameter)

    图  3   DZ-G3-310孔不排水抗剪强度计算

    Figure  3.   Calculation of Su in hole No. DZ-G3-310

    图  4   基于孔压静力触探试验的不排水抗剪强度计算方法

    Figure  4.   Method for calculating Su based on CPTU

    图  5   软黏土不排水抗剪强度实测值与预测值比较

    Figure  5.   Comparison between measured and predicted values of Su of soft clay

    图  6   土体侧限模量与锥尖阻力拟合关系

    Figure  6.   Fitting relationship between M and qc

    表  1   基于扁铲侧胀试验的土体不排水抗剪强度计算方法

    Table  1   Methods for calculating undrained shear strength of soils based on flat dilatometer tests

    序号 提出时间 公式提出者 测试地区 适用土体 计算方法 使用条件
    1 1980年 Marchetti 意大利 黏性土 Su=0.22σv0(0.5KD)1.25 ID<1.2
    2 1987年 Mayne 美国旧金山 软黏土 Su=(p0-u0)/NC NC=3~9
    3 1988年 Lacasse & Lunne 软黏土 Su=aσv0(0.5KD)1.25 a=0.17~0.21
    4 1995年 Kamei & Iwasaki 日本东京 正常固结的海相黏土 Su=0.35σv0(0.47KD)1.14 ID<1.2
    5 1999年 陈国民 中国上海 黏土 Su=0.22σv0(0.5KD)1.25+60(ID-0.35) ID<0.35
    6 2002年 孙莉 中国上海 饱和软黏土 Su=0.052×ED+17.11
    7 2002年 FHWA-IF-02-034 美国 黏性土 Su=(p0-u0)/10
    8 2004年 李雄威等 中国南京 粉砂土 Su=0.22σv0(0.5KD)1.25+15(ID-1.8) ID>1.8
    9 2004年 唐世栋等 中国上海 软黏土 Su=(-0.06ID2+0.42ID+0.19)σv0(0.47KD)1.14 ID<1.2
    10 2011年 卢力强等 中国天津 海相饱和软土 Su=0.17σv0(0.5KD)1.25 ID≤0.35
    11 2011年 吕俊青等 中国昆明 湖相软黏土 Su=σv0KD-0.5+0.8(ID+21)
    Su=σv0KD-0.5+0.3(ED+56)
    12 2014年 涂启柱 中国温州 软黏土 Su=(16.7p0+9p2-7.7u0)×10-2+5.205
    13 2016年 赵东 中国宁波 饱和软黏土 Su=0.324(p1-p0)+10.398
    下载: 导出CSV

    表  2   基于CPTU和DMT的砂性土有效内摩擦角预测结果

    Table  2   Predicted results of φ based on CPTU and DMT

    计算方法 试验方法 实际拟合结果
    φi/φ1i=2, 3, 4) R2 平均值 标准差
    孔压规程 CPTU 1.6458 0.9945 1.6606 0.13
    水运规程 CPTU 1.1965 0.9907 1.2052 0.12
    式(4) DMT 0.9313 0.9893 0.9394 0.10
    下载: 导出CSV
  • [1] 郭全元, 钟仕兴, 肖旺. 基于孔压静力触探(CPTU)及扁铲侧胀试验(DMT)南沙软土力学特性研究[J]. 广东土木与建筑, 2022, 29(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GDTM202206007.htm

    GUO Quanyuan, ZHONG Shixing, XIAO Wang. Study on the mechanical properties of soft soil in Nansha based on CPTU and DMT[J]. Guangdong Architecture Civil Engineering, 2022, 29(6): 26-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDTM202206007.htm

    [2] 段伟, 蔡国军, 刘松玉. 基于CPTU与剪切波速测试的宁波海相黏土强度特性评价[J]. 哈尔滨工程大学学报, 2018, 39(12): 1918-1925. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201812008.htm

    DUAN Wei, CAI Guojun, LIU Songyu. Evaluation of strength characteristics of Ningbo marine clay based on CPTU and shear wave velocity tests[J]. Journal of Harbin Engineering University, 2018, 39(12): 1918-1925. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201812008.htm

    [3] 曾小红. 地震扁铲侧胀试验与静力触探试验在岩土勘察中的综合应用[J]. 土工基础, 2020, 34(4): 528-531, 536. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202004032.htm

    ZENG Xiaohong. Applications of SDMT and CPT in geotechnical investigation[J]. Soil Engineering and Foundation, 2020, 34(4): 528-531, 536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202004032.htm

    [4] 刘维正, 葛孟源, 李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析[J]. 岩土工程学报, 2021, 43(增刊2): 267-275. doi: 10.11779/CJGE2021S2063

    LIU Weizheng, GE Mengyuan, LI Tianxiong. Comparison and statistical analysis of engineering characteristics of marine soft soil in Nansha District of Guangzhou City based on in situ tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 267-275. (in Chinese) doi: 10.11779/CJGE2021S2063

    [5]

    DRNEVICH V P, MAYNE P W. Determining preconsolidation stress and penetration pore pressures from DMT contact pressures[J]. Geotechnical Testing Journal, 1987, 10(3): 146. doi: 10.1520/GTJ10947J

    [6] 刘斌奇, 陈忠清, 刘培成, 等. 扁铲侧胀试验及其工程应用研究进展[J]. 科技通报, 2021, 37(8): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB202108002.htm

    LIU Binqi, CHEN Zhongqing, LIU Peicheng, et al. Research progress of flat dilatometer test and its engineering application[J]. Bulletin of Science and Technology, 2021, 37(8): 8-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB202108002.htm

    [7] 中国土木工程学会. 孔压静力触探测试技术规程: T/CCES—2017[S]. 北京: 中国建筑工业出版社, 2017.

    China Civil Engineering Society. Technical Specification for Piezocone Penetration Testing: T/CCES—2017[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)

    [8] 中华人民共和国交通运输部. 水运工程静力触探技术规程: JTS/T 242—2020[S]. 北京: 人民交通出版社, 2021.

    Ministry of Transport of the People's Republic of China. Technical Specification for Cone Penetration Testing in Port and Waterway Engineering: JTS/T 242—2020[S]. Beijing: China Communications Press Co., Ltd, 2021. (in Chinese)

    [9] 任士房, 曾洪贤. 基于圆形弹性薄板模型求解扁铲侧胀试验侧向基床系数[J]. 路基工程, 2019(3): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201903006.htm

    REN Shifang, ZENG Hongxian. Solution of lateral subgrade coefficient in flat dilatometer test based on model of elastic thin circular plate[J]. Subgrade Engineering, 2019(3): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201903006.htm

图(6)  /  表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  22
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-06
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回