Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

常吸力下非饱和粗粒土率相关力学特性试验研究

尹凤杰, 蔡国庆, 苏彦林, 单冶鹏, 李舰

尹凤杰, 蔡国庆, 苏彦林, 单冶鹏, 李舰. 常吸力下非饱和粗粒土率相关力学特性试验研究[J]. 岩土工程学报, 2023, 45(S1): 24-28. DOI: 10.11779/CJGE2023S10013
引用本文: 尹凤杰, 蔡国庆, 苏彦林, 单冶鹏, 李舰. 常吸力下非饱和粗粒土率相关力学特性试验研究[J]. 岩土工程学报, 2023, 45(S1): 24-28. DOI: 10.11779/CJGE2023S10013
YIN Fengjie, CAI Guoqing, SU Yanlin, SHAN Yepeng, LI Jian. Rate-dependent experimental study on unsaturated coarse-grained soil controlled by matrix suction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 24-28. DOI: 10.11779/CJGE2023S10013
Citation: YIN Fengjie, CAI Guoqing, SU Yanlin, SHAN Yepeng, LI Jian. Rate-dependent experimental study on unsaturated coarse-grained soil controlled by matrix suction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 24-28. DOI: 10.11779/CJGE2023S10013

常吸力下非饱和粗粒土率相关力学特性试验研究  English Version

基金项目: 

中央高校基本科研业务费项目 2023JBZD004

国家自然科学基金项目 U2034204

国家自然科学基金项目 52078031

江苏省隧道与地下工程技术研究中心开放基金项目 2021-SDJJ-04

详细信息
    作者简介:

    尹凤杰(1997—),女,博士研究生,研究方向为非饱和土力学理论。E-mail: 22110347@bjtu.edu.cn

    通讯作者:

    蔡国庆, E-mail: guoqingcai@bjtu.edu.cn

  • 中图分类号: TU43;TU411

Rate-dependent experimental study on unsaturated coarse-grained soil controlled by matrix suction

  • 摘要: 为研究山区高填方路基的时效变形特性,针对路基粗颗粒填料,开展了粗颗粒填料持水特性和一系列常吸力作用下的率相关力学特性试验,采用三种不同剪切速率对试样进行剪切,分析围压、基质吸力及剪切速率对土体强度和变形特征的影响。试验结果表明:粗颗粒填料的土水特征曲线未出现残余吸力值;不同围压下粗颗粒填料的峰值强度可表示为基质吸力的函数,基质吸力越大,非饱和粗粒土的剪切强度越高,且体积剪缩变形越小;非饱和粗粒土的强度与体积变形均受剪切速率的影响,且变化趋势表现出高度一致性,剪切速率越大,试样强度越高,对应的体积变形越小。
    Abstract: To study the time-dependent deformation characteristics of high-fill subgrade in mountainous areas, the water-retention characteristics of coarse filler and a series of rate-dependent mechanical properties tests under constant suction are carried out for the coarse filler of subgrade. Three different shear rates are used to shear the samples, and the effects of confining pressure, matrix suction and shear rate on the strength and deformation characteristics of soil are analyzed. The test results show that there is no residual suction value in the soil-water characteristic curve of coarse filler. The peak strength of coarse-grained fill under different confining pressures can be expressed as a function of matrix suction. The greater the matrix suction, the higher the shear strength of unsaturated coarse-grained soil, and the smaller the volume shear deformation. The strength and volume deformation of unsaturated coarse-grained soil are affected by the shear rate, and the change trend shows high consistency. The higher the shear rate, the higher the sample strength, and the smaller the corresponding volume deformation.
  • 电渗法因其能耗过大在工程应用推广上受到诸多限制。最新研究结果表明,降低电极与土壤界面的电阻,可以有效解决电渗法能耗过大的问题,并且显著提升电渗的效率[1]

    电化学领域中已经开发了多种成熟的技术来降低界面电阻。其中,磁电化学技术因其出色的性能引起广泛关注。当施加垂直于电场的磁场时,电解液中会产生对流,这一效应能够大幅提高传质在电极表面的交换速率,进而减小界面电阻[2]。这种磁场效应被称为“磁流体动力学效应”(MHD),主要由电磁场激发的洛伦兹力而产生[3]。Weier等[4]使用数字粒子图像测速仪(DPIV)直接观测了MHD对流引起的速度场。他们发现电解过程中的传质交换会受到磁场的显著影响。Olivas等[5]通过理论推导和数值模拟研究发现磁场的MHD效应可以有效提高电镀的效率。此外,Angulo等[6]对水电解的研究进行了全面概述,指出磁场可以降低活化、欧姆和浓度过电位。如今,磁电化学已在多个领域得到了很好的应用。

    理论上来看,由于电场是电渗的固有特征,同样地引入垂直磁场也可以激发洛伦兹力,产生MHD效应,进而降低界面电阻,提高电渗效率。而且,永磁体成本低,操作便捷,只需置入土体中就能发挥作用。简言之,客观来讲,将磁场引入电渗系统中是极具可行的方法。因此,本文设计了一系列的试验,并基于界面电阻指标、排水指标、能耗指标客观评估了在电渗中引入磁场的潜力。

    本研究中采用的土样取自中国浙江省杭州市西湖区某基坑工程,为典型的杭州地区黏性土,原状土的基本物理性质如表 1所示。

    表  1  试验土样基本物理性质
    Table  1.  Physical parameters of test soil
    含水率/% 土粒相对质量密度Gs 孔隙比e 电导率/(S·m-1) 液限wL 塑限wP 渗透系数k/(cm·s-1)
    58.5 2.74 1.470 0.16 45 24 1.2×10-9
    下载: 导出CSV 
    | 显示表格

    将原状土烘干磨细后,重制成含水率为85%左右的土样,然后装入试样模型盒中制成试验样品。

    图 1是自主研发的室内电渗试验装置的示意图。其中,模型盒的长、宽、高分别为20,10,10 cm。在模型盒两侧放置电极板,土工织物布置在电极后面,以防止土颗粒逸出。阴极槽的底部设置有排水孔。烧杯和天平放置在孔下方,用于收集和监测排出液。

    图  1  试验装置示意图
    Figure  1.  Schematic diagram of test devices

    南北磁极都分别由两块N52磁铁组成,表面磁场强度为0.22 T,单个磁铁的长、宽、高分别为5,5,3 cm。该场强能有效引起液相的对流运动[7]

    本研究中采用的电极和电势探针为常规电渗室内试验材料。电源电压为常规输出电压30 V[1, 8]

    表 2所示,为了探究磁场的最佳布置方案,本研究将磁极置于不同位置,进行系统性的试验研究。

    表  2  试验方案表
    Table  2.  Test schemes
    试验编号 电导率/(S·m-1) 含水率/% 磁极布置位置 磁场强度/T 通电时间/h
    A1 0.276 84.8 0.22 T 24
    A2 85.1 阳极
    A3 85.2 阴极
    A4 84.7 土体
    B1 0.211 85.1
    B2 84.5 阳极
    C1 0.108 84.2
    C2 85.2 阳极
    下载: 导出CSV 
    | 显示表格

    表 1中,A1、B1、C1是各组相应的对照组,没有布置磁场,因此可以作为基准参考线。其余各组都是试验组,磁场从通电开始就布置在特定位置一直到结束。在磁场方向上,如图 2所示,本研究采用了相关文献的布置方式[3]。这样的电磁场布置方式会产生向上的洛伦兹力,更有效地抑制界面电阻的上升。

    图  2  磁场布置示意图
    Figure  2.  Schematic diagram of layout of magnetic field

    A组的试验结果表明,磁场最佳布置位置在阳极。因为含盐量大小影响了电场在土体中的传递。基于此,本文探讨了含盐量因素对磁场作用效果的影响。室内试验中常用的土体电导率介于0.1至0.3 S/m[1, 8]。因此,本文采用NaCl溶液将土体电导率调至0.211 S/m(B)和0.108 S/m(C)进行试验。电导率由Rayleigh DJS-1C高精度仪器测定。

    进一步地,本文通过高精度数字万用表的监测数据,并根据欧姆定律测算了阳极界面电阻。此外,排水指标是最为直接可靠的判断依据,本文设置的排水监测系统能每隔10 min记录累积排水量的变化。

    土体-电极界面的电阻可以在一定程度上反映电渗过程中的实时变化情况[1]。有必要对该指标进行分析,进而客观评估磁场作用对电渗的影响。

    图 3,A组阳极界面电阻的变化具有一定的规律性。在通电后的前12 h,各组的电阻变化并不明显。之后,各组界面电阻出现不同程度的增加。A1~A4的最终电阻分别为16.54,28.62,21.63,17.07 Ω。相比于对照组A1,阳极布置磁场的A2增长最为明显,其次是阴极布置磁场的A3,而土体处布置磁场的A4没有明显差异。结果说明在电极处布置磁场会对阳极界面电阻产生显著影响。

    图  3  阳极界面电阻随时间变化
    Figure  3.  Variation of anode interface resistance with time

    上述的观察结果可能会得出这样的结论:磁场会导致阳极界面电阻的快速增加。然而,电渗中的电化学参数变化必须考虑土体中的离子含量和水分含量这两个因素的影响[9]。阳离子是土体液相中主要的电荷载体,较高的阳离子浓度代表较好的电化学特性。此外,土体电阻的升高通常与其水分含量的减少有关,而土体电阻的变化又会影响电化学参数的变化。因为本研究中试验材料的初始含水率相似,可以用排水指标来反映土体中的含水率变化。且单位体积的排出液中的离子含量相近,所以排水指标也能反映土体中的离子含量变化。基于此,本文选用排水量作为水平轴,进而更客观地评估磁场对电渗的影响。

    图 4显示了各试验组在相同排水过程中阳极界面电阻的变化。可以明显观察到各试验组电阻处于低值且稳定的持续过程并不相同。A1、A2、A3和A4组的电阻开始上升时所对应的排水量分别为130,185,150,130 mL。与对照组(A1)相比,阳极布置(A2)延迟了42.31%,阴极布置(A3)延迟了15.38%,而土体布置(A4)没有观察到显著差异。结果表明,磁场需要合理布置才能延缓界面电阻的上升,且布置在阳极的效果(A2)最为显著。

    图  4  阳极界面电阻随排水量变化
    Figure  4.  Variation of anode interface resistance with drainage volume

    磁场效应能有效减缓界面电阻的上升,会对电渗效率会产生积极的影响。如图 5所示,排水速率的变化趋势呈急剧增加、随后逐渐衰减到稳定。

    图  5  排水速率随时间变化
    Figure  5.  Variation of drainage rate with time

    图 5显示各试验组的峰值排水速率存在显著差异。A1~A4组的峰值排水量分别为19.75,23.93,20.13,19.45 mL/h。阳极布置磁场(A2)峰值速率比对照组(A1)增加了20.91%,而其他试验组(A3、A4)没有观察到明显的差异。

    在达到峰值后,A1~A4的平均排水速率分别为9.50,13.31,11.03,9.80 mL/h。阳极布置(A2)平均排水速率相较于对照组(A1)增加了40.08%,阴极布置(A3)平均排水速率增加了16.12%,而土体布置(A4)没有出现显著增长。上述结果说明磁场的引入能够显著提高排水速率。

    图 6,A1~A4的累计排水量分别为186.11,243.46,210.29,183.73 mL。相对于对照组A1,阳极布置磁场(A2)和阴极布置磁场(A3)能提高排水量分别为30.82%和12.99%,而土体布置磁场(A4)没有出现排水量增大的现象。结果说明电极处布置磁场能提高排水上限,特别是布置在阳极处。

    图  6  累计排水量随时间变化
    Figure  6.  Variation of cumulative drainage with time

    进一步的,电极处布置磁场能够大幅缩减电渗的处理时间。布置在阳极处的效果最佳,A2在通电后的11 h内就能达到对照组A1的最终排水量,布置在阴极的A3在18 h内达到。

    上述结果证明了在电渗系统中引入阳极磁场极具潜力。本文对不同含盐量的试验土样进行进一步研究,以综合评估这一方法。

    图 7所示,阳极磁场布置的增效作用使得试验组的排水上限都得到了显著提高。与相应的对照组(B1、C1)相比,试验组(B2、C2)的最终排水量分别增加了22.29%和31.87%。

    图  7  不同含盐量下排水量随时间变化
    Figure  7.  Variation of drainage with time under different salt contents

    此外,达到对照组(B1、C1)的最终排水量,试验组(B2、C2)分别仅需约12,15 h。与相应的对照组相比,试验组的持续时间分别节省了约50.00%和37.50%。这说明对于不同含盐量土体,磁场都能够较好地提高电渗效率,节约时间成本。

    高能耗仍然是电渗法在实际工程中应用的一个重大障碍。因此,有必要分析引入磁场后的能耗情况。

    为了表达更为客观,这里对排水过程进行了标准化,主要反映在参数“t1”和“t2”上,如下式:

    E1=UI(t1)dt1 (1)

    式中:E1为等效能耗(W·h);U为电源输出电压,取30 V;I(t1)为电流(A);t1为试验组排水量达到与对应对照组所需的时间,对照组(A1、B1、C1)的时间为0~24 h,试验组A2、A3、A4、B2、C2的时间分别为0~11 h、0~18 h、0~24 h、0~12 h和0~15 h,如图 67所示。

    此外,为了清楚地证明能耗的降低,使用以下公式计算试验组的过剩能耗:

    E2=UI(t2)dt2 (2)

    式中:E2为过剩能量消耗(W·h);I(t2)为电流(A);t2为从等效时间到试验结束的持续时间,试验组A2、A3、A4、B2、C2的时间分别为11~24 h、18~24 h、24~24 h、12~24 h和15~24 h,如图 67所示。

    本文依据式(3)计算了平均能耗系数α,该系数可以衡量单位排水体积所需的能耗大小[10]。式(3)中,因对照组没有过剩能量消耗,因此表示对应的E2值为零。

    α=E1+E2Vd=UI(t1)dt1+UI(t2)dt2Vd (3)

    在A组中,在电极(A2,A3)处布置磁场不仅显著降低了总能耗,而且提高了能量利用率。与对照组A1相比,阳极布置磁场的A2使所需的能耗减少了27.68%,阴极布置磁场的A3减少了10.34%。在能量利用方面,A1~A4的能耗系数分别为1.81,1.30,1.57,1.83 W·h·mL-1。其中,A2的系数最低,其次是A3,而土体处布置磁场的A4没有显著差异。说明阳极布置磁场能显著提高能量利用率,减小排出单位体积水所需要的能量。

    图  8  各试验组能耗分析
    Figure  8.  Energy consumption analysis

    在其他组(B、C)中,阳极布置磁场的方法同样显著改善了能耗情况。相比于相应的对照组,B2组减少了22.81%,C2组减少了14.51%。此外,各个试验组的能量消耗系数也出现大幅下降。上述结果证明该方法能有效解决电渗的能耗问题。

    本文主要探讨了在传统电渗框架内引入磁场的可能性。通过室内试验和各类指标的分析,得出以下3点结论。

    (1)经过对阳极界面电阻的全面分析,在电极处引入磁场能显著缓解阳极界面电阻和阴极界面电阻的上升,且在阳极处布置磁场能达到最佳效果。

    (2)排水参数表明,在电极处放置磁场能显著提高排水效率,且置于阳极处的效果最佳。多组试验表明阳极磁场能显著提高排水上限,大幅缩短土体固结时间。

    (3)全面分析了引入磁场后的能耗情况,包括能量利用系数、等效能量消耗、过剩能耗。数据表明引入磁场能有效解决电渗高能耗的问题,显著提高能耗利用率,降低排水所需能耗。

    磁场在电渗过程中的作用机制尚需深入研究。进一步的研究将关注磁场对界面电化学反应,并探讨电化学反应与土体中离子迁移之间的关系。

  • 图  1   颗粒级配曲线图

    Figure  1.   Grain-size distribution curve

    图  2   土水特征曲线

    Figure  2.   Soil-water characteristic curve

    图  3   土样在不同基质吸力下的应力-应变曲线

    Figure  3.   Stress-strain-volume curves of soil samples under different matric suctions

    图  4   基质吸力与偏应力关系曲线

    Figure  4.   Relation curves between matrix suction and deviatoric stress

    图  5   土样在不同剪切速率下的应力-应变曲线

    Figure  5.   Stress-strain curves of soil samples under different shear rates

    图  6   土样在不同剪切速率下的体应变曲线

    Figure  6.   Strain-volume curves of soil samples under different shear rates

    图  7   土样的剪切速率-峰值强度-体变曲线

    Figure  7.   Shear rate-strength-volume curves of soil samples

    表  1   试验控制条件

    Table  1   Control conditions in tests

    围压σ3/kPa 基质吸力S/kPa 剪切速率v/(mm·min-1)
    100,200 50,100,200 0.011
    100 50,100,200 0.011,0.005,0.0025
    下载: 导出CSV

    表  2   峰值强度拟合参数值

    Table  2   Values of fitting parameters of peak strength

    围压σ/kPa a b R2
    100 6.358 48.834 0.996
    200 28.619 219.054 0.907
    下载: 导出CSV
  • [1] 谢毅, 肖杰. 高速铁路发展现状及趋势研究[J]. 高速铁路技术, 2021, 12(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202102004.htm

    XIE Yi, XIAO Jie. Research on high-speed railway development status and trend[J]. High Speed Railway Technology, 2021, 12(2): 23-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202102004.htm

    [2] 朱颖, 魏永幸, 蒋登伟, 等. 复杂艰险山区高速铁路减灾选线设计研究[J]. 高速铁路技术, 2020, 11(2): 7-11, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002003.htm

    ZHU Ying, WEI Yongxing, JIANG Dengwei, et al. Research on route selection design of high-speed railway for disaster reduction in complex and dangerous mountain[J]. High Speed Railway Technology, 2020, 11(2): 7-11, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002003.htm

    [3]

    LI T R, LIU J G, DING Y Q, et al. Effects of moisture and compactness on uniaxial dynamic compression of sandy soil under high strain rates[J]. Transportation Geotechnics, 2022, 34: 100757. doi: 10.1016/j.trgeo.2022.100757

    [4]

    TOYOTA H, TAKADA S, SUSAMI A. Rate dependence on mechanical properties of unsaturated cohesive soil with stress-induced anisotropy[J]. Soils and Foundations, 2019, 59(4): 1013-1023. doi: 10.1016/j.sandf.2019.04.001

    [5]

    WOONGJU M, MCCARTNEY JOHN S. Rate effects in constant rate of strain compression tests on unsaturated soils to high pressures[J]. Stand Alone, 2015, 0: 1983-1990.

    [6]

    CAI G Q, SU Y L, ZHOU A N, et al. An elastic-viscoplastic model for time-dependent behavior of unsaturated soils[J]. Computers and Geotechnics, 2023, 159: 105415. doi: 10.1016/j.compgeo.2023.105415

    [7] 胡田飞, 刘建坤, 刘振亚, 等. 粉质黏土强度特性应变速率效应的试验研究[J]. 铁道学报, 2018, 40(2): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802020.htm

    HU Tianfei, LIU Jiankun, LIU Zhenya, et al. Experimental study on strain rate effect of strength characteristics of silty clay[J]. Journal of the China Railway Society, 2018, 40(2): 132-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802020.htm

    [8]

    WU S S, ZHOU A N, SHEN S L, et al. Influence of different strain rates on hydro-mechanical behaviour of reconstituted unsaturated soil[J]. Acta Geotechnica, 2020, 15(12): 3415-3431. doi: 10.1007/s11440-020-01026-3

    [9]

    TATSUOKA F, DI BENEDETTO H, ENOMOTO T, et al. Various viscosity types of geomaterials in shear and their mathematical expression[J]. Soils and Foundations, 2008, 48(1): 41-60. doi: 10.3208/sandf.48.41

    [10]

    KAMOUN J, BOUASSIDA M. Creep behavior of unsaturated cohesive soils subjected to various stress levels[J]. Arabian Journal of Geosciences, 2018, 11(4): 1-7.

    [11]

    YAO W M, HU B, ZHAN H B, et al. A novel unsteady fractal derivative creep model for soft interlayers with varying water contents[J]. KSCE Journal of Civil Engineering, 2019, 23(12): 5064-5075. doi: 10.1007/s12205-019-1820-5

    [12]

    LAI X L, WANG S M, YE W M, et al. Experimental investigation on the creep behavior of an unsaturated clay[J]. Canadian Geotechnical Journal, 2014, 51(6): 621-628. doi: 10.1139/cgj-2013-0064

    [13]

    ZHANG C A, LI J Z, HE Y. Experimental study on viscoplastic property of unsaturated reticulate red clay used as an engineered barrier[J]. Geofluids, 2020, 2020: 1-13.

    [14] 王智超, 罗磊, 田英辉, 等. 非饱和压实土率敏性及蠕变时效特征试验研究[J]. 岩土力学, 2022, 43(7): 1816-1824, 1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207007.htm

    WANG Zhichao, LUO Lei, TIAN Yinghui, et al. Experimental study on time-dependent characteristics of rate-sensitivity and creep of unsaturated compacted soil[J]. Rock and Soil Mechanics, 2022, 43(7): 1816-1824, 1844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207007.htm

    [15]

    CHEN W B, LIU K, FENG W Q, et al. Influence of matric suction on nonlinear time-dependent compression behavior of a granular fill material[J]. Acta Geotechnica, 2020, 15(3): 615-633.

    [16] 刘梓萌. 砂质Q3黄土变形特性及温度效应的试验研究[D]. 北京: 北京交通大学, 2020.

    LIU Zimeng. Experimental Study on Deformation Characteristics and Temperature Effect of Sandy Q3 Loess[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)

    [17] 刘倩倩, 李舰, 蔡国庆, 等. 全吸力范围的盐渍土持水特性的试验研究[J]. 岩土力学, 2021, 42(3): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103014.htm

    LIU Qianqian, LI Jian, CAI Guoqing, et al. Experimental study on water retention characteristics of saline soil in the full suction range[J]. Rock and Soil Mechanics, 2021, 42(3): 713-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103014.htm

    [18]

    PINCUS H J, YAMAMURO J A, LADE P V. Effects of strain rate on instability of granular soils[J]. Geotechnical Testing Journal, 1993, 16(3): 304.

    [19]

    ZHANG Y A, ISHIKAWA T, TOKORO T, et al. Influences of degree of saturation and strain rate on strength characteristics of unsaturated granular subbase course material[J]. Transportation Geotechnics, 2014, 1(2): 74-89.

    [20]

    ROJAS J C, MANCUSO C, HAMZA M, et al. Effect of loading rate on the behaviour of unsaturated soils[C]// International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, Alexandria, Egypt. 5–9 October. 2009.

图(7)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回