• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

复杂卸荷路径下饱和粉土剪切特性研究

英旭, 李敏, 夏百惠, 沈楠杰, 蒋刚, 钟建峰

英旭, 李敏, 夏百惠, 沈楠杰, 蒋刚, 钟建峰. 复杂卸荷路径下饱和粉土剪切特性研究[J]. 岩土工程学报, 2023, 45(S1): 75-78. DOI: 10.11779/CJGE2023S10006
引用本文: 英旭, 李敏, 夏百惠, 沈楠杰, 蒋刚, 钟建峰. 复杂卸荷路径下饱和粉土剪切特性研究[J]. 岩土工程学报, 2023, 45(S1): 75-78. DOI: 10.11779/CJGE2023S10006
YING Xu, LI Min, XIA Baihui, SHEN Nanjie, JIANG Gang, ZHONG Jianfeng. Shear behavior of saturated silt under complex unloading paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 75-78. DOI: 10.11779/CJGE2023S10006
Citation: YING Xu, LI Min, XIA Baihui, SHEN Nanjie, JIANG Gang, ZHONG Jianfeng. Shear behavior of saturated silt under complex unloading paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 75-78. DOI: 10.11779/CJGE2023S10006

复杂卸荷路径下饱和粉土剪切特性研究  English Version

基金项目: 

上海市科学技术委员会资助课题 20DZ2251900

详细信息
    作者简介:

    作者简介:英旭(1979—),男,正高级工程师,主要从事地下工程施工技术管理工作。E-mail:15571559@qg.com

    通讯作者:

    蒋刚, E-mail: g.jiang@njtech.edu.cn

  • 中图分类号: TU432

Shear behavior of saturated silt under complex unloading paths

  • 摘要: 为研究基坑开挖卸荷路径下土体的力学特征,开展了饱和粉土卸荷路径三轴排水剪切试验,获取了不同应力路径的应力应变曲线,分析了卸荷比、围压和应变水平对割线模量的影响,提出了饱和粉土卸荷模量简化公式。结果表明:不同卸荷应力路径的应力应变曲线均呈应变软化型,卸荷模量随卸荷比的减小、围压的增大而增大。K0固结侧向卸荷路径(EB)的峰值剪应力高于K0固结双向卸荷路径(EC、FD);应力路径对割线模量衰减的影响程度差异显著,K0固结双向卸荷路径(EC、FD)对割线模量衰减的影响最大。说明基坑坑底土体强度较高,受开挖的影响较小,抗变形能力较大,在基坑工程设计中,应考虑基坑不同区域对应的割线模量。
    Abstract: The excavation of foundation pit engineering has different unloading effects on the surrounding soil. The existing specifications mainly use the consolidated undrained strength index based on the conventional triaxial tests, which cannot describe the mechanical characteristics of the excavation soil under the unloading path. The triaxial drainage shear tests on the unloading path of saturated silt are conducted, the stress-strain curves for different stress paths are obtained, the effects of unloading ratio, confining pressure and strain level on the secant modulus are analyzed, and a simplified formula proposed for the unloading modulus of saturated silt. The results show that the stress-strain curves of different unloading stress paths all exhibit a strain softening type, and the unloading modulus increases with a decrease in the unloading ratio and an increase in the confining pressure. The peak shear stress of K0 consolidation lateral unloading path (EB) is higher than that of K0 consolidation bidirectional unloading path (EC, FD). The influences of the stress paths on the attenuation of the secant modulus vary significantly, with K0 consolidation bidirectional unloading paths (EC, FD) having the greatest impact on the attenuation of the secant modulus. The strength of the soil at the bottom of the foundation pit is relatively high, and it is less affected by excavation, with a greater capability to resist deformation. In the design of foundation pit engineering, the corresponding secant modulus in different areas of the foundation pit should be considered.
  • 非饱和状态下的土体具有很高的强度[1],然而遇水湿化强度会迅速降低,局部可能达到饱和,该状态下的土压力值与非饱和条件下的值差别很大。多名学者统计显示大部分基坑事故都与水有关,此外,2019年6月8日南宁绿地中心基坑塌陷也是因为场地管道爆裂,非饱和土遇水湿化,作用在支护结构的土压力增大[2]。因此,亟需定量评估浸湿作用对非饱和土侧向土压力的影响,提出计算方法,减少此类事故发生。

    目前,对非饱和土压力研究获得了很大进展,但现有研究多从理论出发进行公式推导,1961年Coleman等[3]提出双变量理论,Fredlund便得到净应力与吸力的双变量理论,之后得到了扩展的朗肯土压力理论,但是在平时的设计和研究中,仍然采用朗肯土压力理论[4]计算非饱和土压力。姚攀峰等[5]提出了与扩展型朗肯土压力不同的计算方法广义朗肯土压力计算方法,陈铁林等[6]解决水位变化及降水条件下的土压力计算问题,根据K0定义推导K0求解式。任传健等[7]结合Fredlund非饱和土抗剪切与强化准则和经典的朗肯土压计算公式,得出考虑降水变化的土压计算公式。汪丁建等[8]在饱和土朗肯土压力分析基础上,推导出降雨条件下非饱和朗肯土压力。王晓亮等[9]将降雨和蒸发对基质吸力的影响引入到非饱和土抗剪强度公式中,得到K0随降雨定性变化,但没有定量结果。

    已有的大量研究充分表明水对静止土压力的影响不可忽略,但已有的计算公式复杂不实用,结果有待验证。导致现有非饱和土体仍采用饱和土理论的计算结果加安全储备来设计计算[10],安全系数是否足够不明确。为了使湿化条件下静止土压力增量的演化规律更明确,本文通过室内试验确定了其相关的变化规律、建立相应的计算模型,减小对安全施工的威胁。

    取北京延庆地区原状粉质黏土进行烘干、碾碎、过0.25 mm筛备用,进行基本物理性质测试,依据《土工试验方法标准:GB/T50123—2019》[11],结果见表 1

    表  1  土的基本物理性质
    Table  1.  Basic physical properties of soil
    最大干
    密度/
    (g·cm-3)
    最优含水率/% 液限
    wL/%
    塑限wP/% 塑性指数IP 土粒相对密度GS
    1.80 16.5 30.7 15.2 15.5 2.73
    下载: 导出CSV 
    | 显示表格

    选择干密度1.53 g/cm3(压实度0.85)、高度40 mm的标准环刀试样开展K0压缩试验,设5个不同的初始饱和度与4个不同的上覆荷载,具体方案见表 2

    表  2  浸水条件下非饱和粉质黏土试验方案
    Table  2.  Test schemes under water immersion conditions
    上覆荷载/kPa 加载过程 初始饱和度
    100/200/
    300/400
    100(200/300/400)kPa→湿化→逐级加载至1600kPa 0.2/0.3/0.4/
    0.5/0.6
    下载: 导出CSV 
    | 显示表格

    (1)仪器标定。本文采用JCY型K0固结仪来完成K0压缩试验,在气囊中充入与试样等体积的水,利用水各向等压特性标定仪器在竖向压力下对土压力的测量,根据试验数据拟合得到两仪器的标定系数[12]

    (2)制样并养护得到不同初始含水率试样。用饱和再风干的土样模拟经过了干湿循环的天然非饱和土,通过7 d密闭养护保证孔隙水分布均匀,见图 1

    图  1  准备不同初始含水率的试样
    Figure  1.  Preparation of samples with different initial moisture contents

    (3)加上覆荷载待稳定后进行湿化饱和,湿化稳定后养护7 d,再完成后续设定加载至试验结束。

    (4)卸压并整理仪器装置,将不同初始饱和度湿化前与湿化压缩后试样进行对比,如图 2所示。

    图  2  试验前后对比图
    Figure  2.  Comparison of soil samples before and after tests

    K0固结仪连接压力传感器采集数据,得到侧压力随时间变化关系[12],从而得到粉质黏土在5个不同初始饱和度Sr和4个不同上覆荷载P作用下发生湿化与湿化后继续加载的水平静止土压力-竖向压力的关系曲线,见图 3,因篇幅关系只展示Sr=0.2结果[12]。对于非饱和土一般采用水土合算计算土压力,此时侧压力传感器测量得到的相当于水土合算下的土压力。

    图  3  静止土压力随竖向压力变化关系(Sr=0.2)
    Figure  3.  Variation of static earth pressure with vertical pressure (Sr=0.2)

    湿化静止土压力增量Δσh统计见表 3,计算式为

    Δσh=σwσd
    (1)
    表  3  湿化静止土压力增量计算值统计
    Table  3.  Statistics of calculated increment static earth pressure
    初始饱和度Sr 0.2 0.3 0.4 0.5 0.6
    100 kPa下增量值 35.14 25.10 17.41 12.5 3.53
    200 kPa下增量值 68.95 48.38 33.32 22.97 6.31
    300 kPa下增量值 95.01 68.95 47.86 29.99 8.98
    400 kPa下增量值 118.02 90.00 60.99 35.97 10.11
    下载: 导出CSV 
    | 显示表格

    式中:σd为上覆荷载作用下湿化前静止土压力大小;σw湿化饱和后静止土压力大小。

    不同初始饱和度湿化过程的增湿水平不同,可使用湿化前初始饱和度表示增湿水平,即:Sr=1的增湿水平为0,Sr越小增湿水平越大。

    表 3可以看到湿化时静止土压力都有不同程度的增大,且初始饱和度Sr越低或上覆荷载P越大,静止土压力增量越大。图 3数据显示,湿化后继续加载呈线性且斜率基本一致,表明K0值大小近似一致,SrP的不同不会影响湿化饱和后K0大小。可能原因是:静止土压力系数主要由有效内摩擦角决定,饱和后有效内摩擦角接近,因此湿化饱和后K0近似一致。

    土体强度理论认为土颗粒间存在综合作用,包括吸力、胶结作用、德华力以及化学键等[4],非饱和土研究学者[13]一般认为土骨架受压为保证完整性依靠两部分力平衡:一是土颗粒间的基质吸力,取决于土体的含水量;另外是土颗粒间的胶结力,取决于土体内部的黏粒微量物质。静止土压力增量是由颗粒间胶结作用的减弱和基质吸力减小两方面原因引起的[14]。为推导计算模型引出中间变量0.65-Sr,如图 4所示,初始饱和度越小,湿化导致基质吸力减少量就越大,静止土压力增量就越大;湿化饱和后上覆荷载越大,对土体胶结力破坏就越大,如图 5所示,湿化饱和后的静止土压力增量,随上覆荷载增加而变大。

    图  4  静止土压力增量与初始饱和度关系
    Figure  4.  Variation of increment of static earth pressure increment with initial saturation
    图  5  静止土压力增量与上覆荷载关系
    Figure  5.  Variation of increment of static earth pressure with load

    土压力增量Δσh与上覆荷载P,初始饱和度Sr都呈线性关系,双线性模型见式(2),PSr确定时有一次函数式(3),(4)。当变量n=Sr+b1=0.65Sr时,土压力增量Δσhn成正比例,k1k2m为斜率,见图 4

    Δσh=k1n×k2m
    (2)
    k1n=k1Sr+b1
    (3)
    k2m=k2P+b2
    (4)

    P与其对应的k1k2m拟合得k1k2m = 0.60P+19.76,再将n代入式(2)中,得到式(5)。当初始饱和度Sr较大接近饱和土时,静止土压力增量为0,观察式(5),当饱和度Sr>0.65时,湿化不会引起静止土压力增加。

    Δσh={(0.60P + 19.76)(0.65Sr)(Sr0.65)0 (Sr>0.65)
    (5)

    为了更直观的表现增量的含义,将ΔSr=1Sr代入式(5),得到最终的增量表达式如下:

    Δσh={(0.60P+19.76)(ΔSr0.35)(ΔSr0.35)0(ΔSr<0.35)
    (6)

    以延庆某深基坑为背景,结合勘察数据,对上文的模型进行试算。该基坑开挖深度23 m,上表面有8 kPa的均布荷载,施工阶段饱和度0.25,已勘测到自然地面以下34 m地层特性,土体基本为粉质黏土。

    根据划分土层的重度与厚度计算出土层下表面荷载,并根据K0算出湿化前静止土压力σhiK0按经验值取0.3。根据式(6)算出静止土压力增量Δσhi,接着计算出湿化后静止土压力σwiσwi/σhi比值,计算值随深度变化绘制在图 6中,发现比值随深度增大而减小,但始终大于1.8,说明湿化对静止土压力影响较大。

    图  6  不同累计深度处静止土压力与其相关计算值关系
    Figure  6.  Static earth pressures and their correlation with depth

    由于本文采用重塑土进行试验,和天然土体湿化时侧压力变化结果不同,特别是黄土等结构性非饱和土,其湿化可能发生湿陷等行为,导致土压力演化较为复杂。本文研究结果仅适用于非结构性的非饱和土。

    本文通过开展室内试验,定量评估浸湿作用对非饱和土侧向土压力的影响,实测浸湿饱和作用下静止土压力增量的变化规律,建立相应的计算模型,通过应用发现设计时必须重视湿化的影响,并得到以下3点结论。

    (1)湿化饱和后,土体的静止土压力系数K0值与初始饱和度、上覆荷载无关。推测土体静止土压力系数K0值主要由有效内摩擦角决定,饱和后有效内摩擦角基本一致,故K0值大小近似一致。

    (2)湿化前的初始饱和度越低,湿化饱和后的静止土压力增量越大;且湿化饱和后的静止土压力增量,随湿化时的上覆荷载增加而变大。

    (3)基于试验数据和机理分析,得到了湿化条件下考虑上覆荷载与初始饱和度的双线性土压力增量计算模型;将其应用于某支挡工程,发现湿化后的土压力可达初始土压力1.8倍以上,设计时必须予以重视。

  • 图  1   应力路径示意图

    Figure  1.   Schematic diagram of stress path

    图  2   不同卸荷路径应力应变曲线

    Figure  2.   Stress-strain curves for silt along unloading paths

    图  3   10-3轴向应变下卸荷模量-卸荷比-围压关系图

    Figure  3.   Relationship among unloading secant modulus (εa=0.1%), unloading ratio and mean effective stress

    图  4   不同应力路径的割线模量

    Figure  4.   Secant moduli for silt along different stress paths

    表  1   粉土基本物理性质指标

    Table  1   Basic physical properties of silt

    含水率w/% 天然干密度ρ/(kg·m-3) 天然重度γ/(kN·m-3) Gs 液限wL/% 塑限wP/% 塑性指数Ip 液性指数IL
    33.4 1.34 17.8 2.70 35.2 25.5 9.7 0.81
    下载: 导出CSV

    表  2   饱和粉土三轴试验方案

    Table  2   Triaxial test protocol for saturated silt

    试验名称 卸荷路径 卸荷速率/(kPa·min-1)
    σ1/kPa(轴向) σ3/kPa(侧向) σ1(轴向) σ3(侧向)
    EB-100 不变 100→0 0 -0.1
    EB-200 不变 200→0 0 -0.1
    EB-400 不变 400→0 0 -0.1
    EG-100 208→0 不变 -0.1 0
    EG-200 433→0 不变 -0.1 0
    EG-400 833→463 不变 -0.1 0
    EC-100 208→183 100 →0 -0.025 -0.1
    EC-200 416→366 200 →0 -0.025 -0.1
    EC-400 833→733 400 →0 -0.025 -0.1
    FD-100 208→158 100 →0 -0.05 -0.1
    FD-200 416→316 200 →0 -0.05 -0.1
    FD-400 833→633 400 →0 -0.05 -0.1
    下载: 导出CSV
  • [1] 曾国熙, 潘秋元, 胡一峰. 软黏土地基基坑开挖性状的研究[J]. 岩土工程学报, 1988, 10(3): 13-22. http://www.cgejournal.com/cn/article/id/9169

    ZENG Guoxi, PAN Qiuyuan, HU Yifeng. The behavior excavation in soft clay ground[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(3): 13-22. (in Chinese) http://www.cgejournal.com/cn/article/id/9169

    [2] 谷川, 王军, 张婷婷, 等. 应力路径对饱和软黏土割线模量的影响[J]. 岩土力学, 2013, 34(12): 3394-3402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312009.htm

    GU Chuan, WANG Jun, ZHANG Tingting, et al. Influence of stress path on secant modulus of soft saturated clay[J]. Rock and Soil Mechanics, 2013, 34(12): 3394-3402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312009.htm

    [3]

    ZHU S, YANG G, WEN Y, et al. Dynamic shear modulus reduction and damping under high confining pressures for gravels[J]. Géotechnique, 2014, 4(3): 179-186. doi: 10.1680/geolett.14.00030

    [4]

    XIAO Y, LIU H L, CHEN Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests I: influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 1-16.

    [5]

    HEITOR A, INDRARATNA B, RUJIKIATKAMJORN C. Laboratory study of small-strain behavior of a compacted silty sand[J]. Canadian Geotechnical Journal, 2013, 50(2), 179-188. doi: 10.1139/cgj-2012-0037

    [6] 刘国彬, 侯学渊. 软土的卸荷模量[J]. 岩土工程学报, 1996, 18(6): 18-23. http://www.cgejournal.com/cn/article/id/8487

    LIU Guobin, HOU Xueyuan. Unloading modulus of the Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 18-23. (in Chinese) http://www.cgejournal.com/cn/article/id/8487

    [7]

    KANTESARIA N, SACHAN A. Small-strain shear modulus and yielding characteristics of compacted high-plasticity clay[J]. Géotechnique, 2022, 72(5): 424-437. doi: 10.1680/jgeot.20.P.089

    [8] 秦鹏飞, 谢晓杰, 马玉林. 不同应力路径下饱和粉土强度与变形特性试验研究[J]. 长江科学院院报, 2016, 33(4): 78-80, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201604018.htm

    QIN Pengfei, XIE Xiaolin, MA Yulin. Deformation and strength characters of saturated silty soil under different stress paths[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(4): 78-80, 85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201604018.htm

    [9]

    BURLAND J B. Ninth Laurits Bjerrum Memorial Lecture: "small is beautiful": the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499-516. doi: 10.1139/t89-064

    [10] 刘国彬, 王卫东. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2009.

    LIU Guobin, WANG Weidong. Foundation Pit Engineering Manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2009. (in Chinese)

    [11] 高彦斌, 罗文康, 骆佳樑, 等. 两种固结状态下软土的三轴不排水剪切模量非线性及对比[J]. 岩土工程学报, 2021, 43(增刊2): 64-67. doi: 10.11779/CJGE2021S2015

    GAO Yanbin, LUO Wenkang, LUO Jialiang, et al. Nonlinear characteristics and comparison of triaxial undrained shear moduli of soft soils under two consolidation states[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 64-67. (in Chinese) doi: 10.11779/CJGE2021S2015

    [12] 韩波, 李杭州, 宋丽. 原状黄土非线性强度特性试验研究[J]. 岩土工程学报, 2021, 43(增刊1): 117-121. doi: 10.11779/CJGE2021S1021

    HAN Bo, LI Hangzhou, SONG Li. Experimental study on nonlinear strength characteristics of intact loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 117-121. (in Chinese) doi: 10.11779/CJGE2021S1021

  • 期刊类型引用(0)

    其他类型引用(1)

图(4)  /  表(2)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  28
  • PDF下载量:  49
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-06
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回