• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含裂隙土质隧道降雨入渗双通道渗流模型

邱军领, 贾玎, 赖金星, 唐琨杰, 强磊

邱军领, 贾玎, 赖金星, 唐琨杰, 强磊. 含裂隙土质隧道降雨入渗双通道渗流模型[J]. 岩土工程学报, 2025, 47(3): 548-558. DOI: 10.11779/CJGE20231215
引用本文: 邱军领, 贾玎, 赖金星, 唐琨杰, 强磊. 含裂隙土质隧道降雨入渗双通道渗流模型[J]. 岩土工程学报, 2025, 47(3): 548-558. DOI: 10.11779/CJGE20231215
QIU Junling, JIA Ding, LAI Jinxing, TANG Kunjie, QIANG Lei. Dual-channel seepage model for tunnels with fissured soil under rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 548-558. DOI: 10.11779/CJGE20231215
Citation: QIU Junling, JIA Ding, LAI Jinxing, TANG Kunjie, QIANG Lei. Dual-channel seepage model for tunnels with fissured soil under rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 548-558. DOI: 10.11779/CJGE20231215

含裂隙土质隧道降雨入渗双通道渗流模型  English Version

基金项目: 

国家自然科学基金青年基金项目 52208386

国家自然科学基金面上项目 51978066

国家自然科学基金面上项目 52278393

长安大学中央高校基本科研业务费专项资金项目 300102213202

详细信息
    作者简介:

    邱军领(1989—),男,博士,副教授,主要从事隧道及地下工程方面的研究工作。E-mail:junlingqiu@chd.edu.cn

    通讯作者:

    赖金星, E-mail:laijinxing@chd.edu.cn

  • 中图分类号: U451

Dual-channel seepage model for tunnels with fissured soil under rainfall infiltration

  • 摘要: 通过含单一裂隙土层局部渗流性态分析中得到的现象和结果,提出双通道渗流模型理论。基于阶跃函数推导了降雨诱发渗流的边界条件及其转换公式,以既有文献中的降雨入渗模型为基础,讨论了阶跃函数过渡区长度的设定,结果发现过渡区长度为4或8个单位时,计算结果较为准确。应用上述结果,通过COMSOL Multiphysics多物理场耦合方法模拟了双通道渗流效应,并探究降雨入渗情况下含裂隙土体的隧道围岩变形特征。同时根据可能影响隧道降雨入渗变形特征的因素包括裂隙位置、降雨强度、裂隙宽度进行多因素影响性分析。结果表明:随着降雨时间的增长,近裂隙一侧隧道拱顶沉降和上部水平位移值明显高于远裂隙侧;裂隙宽度越大,降雨入渗扩展越快,隧道产生的位移越大。对比2 mm裂隙宽度的拱顶沉降和上部水平位移,隧道上方存在8 mm宽度裂隙时,拱顶沉降最大值达328 mm,增幅达6.5%,上部水平位移最大值为26 mm,增幅达44%;降雨强度则对隧道围岩的影响较小。
    Abstract: The theory of a dual-channel seepage model is proposed based on the phenomena and results obtained from the analysis of local seepage behavior in soil layers with a single fissure. By using the step function, the boundary conditions and transformation formula for rainfall-induced seepage are derived. Based on the existing rainfall infiltration models in literatures, the setting of the transition zone length for the step function is discussed. It is found that the calculated results are more accurate when the transition zone length is 4 or 8 units. Applying the above results, the dual-channel seepage effects are simulated using the COMSOL Multiphysics, and the deformation characteristics of the surrounding rock of tunnel with fractured soil under rainfall infiltration are explored. At the same time, a multi-factor impact analysis is conducted based on the factors that may affect the deformation characteristics of rainfall infiltration of the tunnel, including fissure location, rainfall intensity and fissure width. The results show that with the increase of rainfall time, the settlements of the arch and upper horizontal displacement of the tunnel at the side near the fissure are significantly higher than those at side the far from the fissure. The larger the fissure width, the faster the rainfall infiltration and expansion, and the greater the displacement generated by the tunnel. Comparing the settlement of the arch crown with a fissure width of 2 mm and the upper horizontal displacement, when there is a fissure width of 8 mm above the tunnel, the maximum settlement of the arch crown reaches 328 mm, an increase of 6.5%, and the maximum horizontal displacement of the upper part is 26 mm, an increase of 44%. The intensity of rainfall has a relatively small impact on the surrounding rock of the tunnel.
  • 近年来,为实现“双碳”目标并随着“海洋强国”战略的实施,中国海上风电发展迅速。海上风电结构由于其特殊的服役条件,在风、浪等长期环境动荷载的联合下,结构会产生显著的动力响应。过大的振动不仅对结构造成损伤,甚至还会影响发电机组的正常运行,开展海上风电结构动力特性的研究具有重要意义。

    自振频率和阻尼比是反映结构动力特性的重要模态参数[1-4]。国内外有关海上风电结构动力特性的研究集中在通过理论分析及数值建模方面,由于对环境荷载及地质条件的简化,研究成果存在一定局限性和失真现象等。随着海上测试手段完善,以原位测试进行结构振动信号收集,并通过一定数学算法进行模态参数识别研究的方式越来越受到广大学者们重视。Häckell等[1]针对德国5 MW海上三脚架支撑风电结构,提出了通过数据驱动随机子空间方法和向量自回归方法获取结构模态和运行状态参数的分析模型。依据实测数据,Álamo等[2]研究了桩-土相互作用对海上单桩基础动态特性的影响,结果表明表层土体特性对桩-土系统的固有频率和阻尼比变化起到主导作用。Bassett等[3]实测了2.3 MW风电结构开机与稳定运行状态下的结构加速度数据,通过小波分解方法获得了结构振动响应特征。Weijtjens等[4]通过对比利时单桩基础海上风电结构进行了1年的观测数据研究,发现结构自振频率和阻尼比受风电结构运行条件的影响很大。

    复合筒型基础作为一种新的海上风电基础结构型式,因陆上建造成本低、海上安装快、抗倾覆能力强、适用多种地质及水深条件等特点,具有较高的发展潜力,目前已成功应用于江苏响水、大丰、如东以及广东阳江等地海上风场。蔡正银等[5]、Zhu等[6]、练继建等[7]和Ding等[8]对中国复合筒型基础的沉贯特性及静力承载特性等开展了一系列的数值分析、室内试验及原位观测研究,取得了丰富成果,而关于复合筒型基础海上风电结构在环境激励作用下动力特性的研究还相对有限,长期的原位观测数据较为匮乏,结构模态参数与环境激励间的相关性缺乏深入分析。

    为此,本文以江苏如东复合筒型基础海上风电结构为研究对象,采取原位测试获取结构长期振动数据,利用集合经验模态分解-模拟退火算法及随机子空间算法分别进行测试数据的降噪与结构模态参数的识别,重点研究了结构模态参数与环境激励的相关性,并初步就结构频率的时变性进行了讨论。

    江苏如东风电场场址处65 m高度的年平均风速为7.2 m/s,年平均风功率密度为356 W/m2,全年有效风时为7941 h,主风向为东南风,东南东方向的风向频率最大,如东气象站多年风向玫瑰图如图 1(a)所示。全年中波浪主要为东方向,出现频率为34.21%,其次为东南东方向,频率为19.27%,如图 1(b)所示。全年最大有效波高出现北东向,为3.43 m,最大波高为6.36 m。次强浪向为北东向和东南东向,最大有效波高均在3 m左右。测试期间测点处的平均海水深16.5 m,潮位差约4.2 m,平均流速0.87 m/s。

    图  1  如东风向、波浪方向玫瑰图
    Figure  1.  Rose map of perennial winds and waves in Rudong county

    工程地质资料表明,测试风电结构位置处的浅部土层自上而下依次为松散—稍密的粉砂夹粉土(厚度约3.0 m)、淤泥质粉质黏土(厚度约6.3 m)及淤泥质粉质黏土夹粉土(厚度约2.4 m)。现场静力触探和室内试验成果等表明基础深度范围内具有“上硬下软”的地层结构特性,土体基本参数见表 1

    表  1  试验场地土层基本参数
    Table  1.  Basic mechanical parameters of in-situ tests
    土层名称 ρ/(g·cm-3) Es /MPa c/kPa φ/(°)
    粉砂夹粉土 2.01 11.38 3.6 33.7
    淤泥质粉质黏土 1.80 3.09 14.4 11.6
    淤泥质粉质黏土夹粉土 1.85 3.31 14.5 11.8
    注:ρ为天然密度,Es为压缩模量,c为黏聚力,φ为内摩擦角。
    下载: 导出CSV 
    | 显示表格

    以如东某近海风电场的一台筒型基础风电结构进行振动加速度测试,该风电结构离岸约61.0 km,额定功率为4.0 MW,额定转速为11.2 r/min,切入和切出风速分别为3 m/s和25 m/s,额定风速为10.2 m/s。由图 2可知,该海上风电整机结构由上部结构(叶片、轮毂和机舱)、塔筒和基础3部分组成。叶片直径为146.0 m,轮毂高度为95.0 m,上部结构(叶片、轮毂和机舱)质量约为255 t。塔筒为3段式安装,塔筒之间通过法兰连接,质量约为270 t。

    图  2  海上风电结构及测点布置示意图
    Figure  2.  Offshore wind turbine and layout of measuring points

    图 3所示,基础为复合筒型基础,总高42.5 m,泥面下部筒体高度10.0 m,底面直径32.0 m,筒壁厚度为0.02 m,分仓板厚0.025 m,筒体顶部浇筑有0.5 m厚混凝土层;泥面以上的结构为主筒体和撑杆,主筒体直径为5.5 m,壁厚为30~85 mm;撑杆直径为1.2~2.0 m,壁厚为25~35 mm。主筒体通过6根撑杆与筒体相连接,基础总质量约为2136t。

    图  3  筒型基础实物及剖面图
    Figure  3.  Field picture and section of bucket foundation

    图 2所示,在塔筒内壁共设置5个加速度测点,距离筒型基础上部筒身分别为15,25,50,75,90 m。原位观测采用1C302型电容式三向加速度传感器,该传感器轴向灵敏度175 mV/g,最大量程5g。采用DH2002在线监测分析系统进行动态采集,数据采集频率为50 Hz,数据通过4G信号无线传输至远程接收终端。值得注意的是,如图 2所示,考虑到机舱旋转造成的影响,安装在塔筒上的传感器测得的响应会有变化,因此,有必要根据偏航数据进行坐标转换,具体方法可参考文献[9],不再赘述。

    集合经验模态分解(ensemble empirical mode decomposition,EEMD)是在原始信号上叠加若干次白噪声进行辅助分析,将多次分解后的固有模态函数平均值作为最终的(Intrinsic Mode Function)IMF分量,以解决经验模态分解(empirical mode decomposition,EMD)存在的模态混叠缺陷现象[10]。算法基本过程为:

    步骤1:在原始信号基础上加入白噪声信号:

    xi(t)=x(t)+gi(t)
    (1)

    式中:xi(t)为加入噪声后的信号;x(t)为原始信号;gi(t)为白噪声信号。

    步骤2:对xi(t)信号进行EMD分解,获取IMF分解分量:

    xi(t)=j=1maij(t)+ri(t)
    (2)

    式中:aij(t)为第i次分解中的第j个IMF分解分量;m为IMF分解分量个数,ri(t)为残差余项。

    步骤3:对各次加入噪声分解得到的IMF分解分量求均值得到最终的IMF分量,以抵消噪声对分解结果的影响:

    ai(t)=1Ni=1Naij(t)
    (3)

    式中:N为加入噪声的次数。

    模拟退火算法(simulated annealing algorithm, SAA)是一种全局优化方法,可以高效避免陷入局部最优解并最终趋于全局最优解,具有较强的全局收敛性、适应性和鲁棒性。EEMD算法的关键在于所加入白噪声信号的幅值和次数。过大或过小的白噪声幅值和次数都可能导致出现模式混叠现象[10],因此本文引入SAA算法实现EEMD算法中白噪声信号参数的优化选择,实施步骤如下:

    步骤1:构建极值点分布特性评价函数:

    F(x)=i=1N1[Pmax(i+1)Pmax(i)]N11+j=1N2[Pmin(j+1)Pmin(j)]N21
    (4)

    式中:PmaxPmin为极大值点和极小值点位置系数;ij是第i个极大值点和第j个极小值点;N1N2是极大值和极小值数量。

    步骤2:利用SAA算法寻优EEMD中白噪声幅值e的最优解。

    步骤3:依据如下公式,计算白噪声加入次数:

    lne+β2lnN=0
    (5)

    式中:e为白噪声幅值;β为分解误差;N为次数。

    自该风电结构运行日起,提取风电结构工作状态下210 d内的550组测试文件。为更好地反映模态参数的时变性,每个测试文件均截取相同时长的不间断数据信息并进行EEMD-SAA联合降噪处理,以方便进行对比分析。需要注意的是,数据的截取时长会对识别结果造成一定影响,参照前人研究成果[9],数据时长选取为20 min。

    采用随机子空间算法(stochastic subspace identification,SSI)进行模态参数识别,其具有识别精度高、抗干扰性强及鲁棒性强等特点[11],实施步骤如下:

    步骤1:采用降噪数据构造Hankel矩阵,即Y=Yp/Yf,其中下标p表示“过去”,下标f表示“未来”。

    步骤2:构造Toeplitz矩阵形式的协方差矩阵T1/i,即T1/i= Yf YpT

    步骤3:对矩阵T1/i进行奇异值分解得到观测矩阵Oi和控制矩阵Mi,计算公式为

    T1/i=UiSiVi=OiMi
    (6)

    式中:Si为主奇异值对角阵;UiVi分别为左、右奇异矢量矩阵。

    步骤4:计算系统状态矩阵A

    A=Oi+T2/i+1Mi+=Si1/2UiTT2/i+1ViSi1/2
    (7)

    式中:上标+表示伪逆运算。

    步骤5:对系统状态矩阵A进行特征值分析以得出模态参数,设时间间隔为Δt,特征值为zizi对应的第i个连续时间特征值为λi,则有λi=ln zi/Δt。系统的固有频率和阻尼比则为

    fi=|λi|2πξi=Re(λi)|λi|
    (8)

    式中:fi为固有频率;ξi为阻尼比;“Re”表示取实部。

    图 4为低(3~5 m/s)、中(9~11 m/s)及高(15~17 m/s)3种风速范围下的塔筒顶部顺风向的加速度典型测试结果时程图。塔筒顶部加速度振动幅度与风速等级密切相关,但各时间点振动加速度峰值均未超过风机厂商限定值±0.08g,风电结构处于安全状态。

    图  4  塔筒顶部#5测点典型测试结果
    Figure  4.  Partial test results of structural acceleration at measuring point No. 5

    图 5为各位置测点顺风向加速度峰值与对应平均风速关系图。加速度峰值均随平均风速的增大近似呈线性增长,塔筒顶部与下部加速度差异值随着风速增大而明显增长。此外#4和#5测点监测结果的差异较小,加速度峰值交叉出现,说明存在塔筒中上部加速度大于塔筒顶部加速度值的现象,塔筒中上部段受机组发电机运行的显著影响。

    图  5  不同测点加速度测试结果
    Figure  5.  Results of acceleration at different measuring points

    为说明结构整体响应规律及对比分析,图 6给出了利用塔筒下部和顶部两点加速度时序数据,识别得到的机舱径向及切向两个方向的基本模态频率和阻尼比。由图中的数据时序分布可以看出,不同测点时序数据识别得到的结果均表现出一定离散性和随机性。

    图  6  结构模态参数识别结果
    Figure  6.  Identified results of modal parameters

    模态频率方面,在机舱切向方向波动范围为0.294~ 0.320 Hz,在机舱径向方向波动范围为0.296~0.321 Hz;阻尼比方面,结构在机舱切向方向波动范围为1.65%~4.50%,在机舱径向方向波动范围为1.65~4.72%。

    为避免风电结构在运行过程中发生共振,需保证整机运行在合理的安全频率范围内,本风电结构设计采用“软-刚”理念[9],即结构频率需限制在1倍频的风轮旋转频率和3倍频的风轮旋转频率之间。根据设计资料,本风电结构频率允许波动范围为0.27~0.35 Hz,结合测试结果可知测试期间的风电结构模态频率均处于设计允许范围。

    图 7为模态频率和阻尼比的分布直方图。由图可知,不同测点的模态频率及阻尼比分布区间基本一致,说明结构整体未发生不协调振动变形。模态频率及阻尼比均近似服从正态分布,且底部测点数据的拟合优度更高。综合两测点结果来看,径向频率主要集中在0.308~0.315 Hz,径向阻尼比主要集中在2.75%~3.5%;切向频率主要集中在0.302~0.306 Hz,切向阻尼比主要集中在2.25%~3.0%。此外,由测试数据可知径向方向的模态参数均大于切向方向,表明机舱径向方向为风电结构的主要振动方向。

    图  7  结构模态参数分布直方图
    Figure  7.  Distribution histogram of modal parameters

    前述可知,采用不同数据序列识别的模态参数离散明显,从模态参数随环境激励的变化角度进行统计分析更具有准确性和科学性。风和浪荷载是影响海上风电结构振动响应的主要环境激励[7-9]。考虑到实际风和浪荷载的复杂性,为便于分析,在此分别选取平均风速及有效波高来代表风及浪的荷载激励。

    分别统计反演数据样本对应的平均风速及有效波高平均值,并绘制二者与模态频率关系,如图 8所示。总体来看,不同测点处的径向和切向频率随风速变化趋势较为一致,且数据具有一定离散性,可能是受风向、温度及浪荷载等因素的耦合作用影响。

    图  8  不同风速和波高下的结构模态频率
    Figure  8.  Modal frequencies at different wind speeds and wave heights

    图 8(a)(b)中可以看出,模态频率与风速之间呈负相关,且随着风速升高,模态频率的离散性有降低趋势,说明风荷载为控制风电结构振动特性的关键荷载。从图 8(c)(d)中可看出,与风速相关性不同,模态频率与波高之间没有表现出明显的相关性,且随着波高的变化,模态频率的离散性基本没有变化,说明波浪荷载对结构模态频率的影响较弱。此外,对比不同高程处结构模态频率的散点图,可以看出,相较于位于塔筒顶部的#5测点,塔筒低处#1测点的切向频率与径向频率的差值有所降低,二者数据重叠量明显增多。

    为了进一步说明模态频率与风速等级的相关性,按风速范围1 m/s的间隔,将模态频率分组统计。其中,考虑到风速大于14 m/s的数据样本量有限,将其合并为1组,最终数据被划分为12组。

    图 9给出了12组风速范围下径向频率和切向频率随风速变化的箱型图。总体而言,在相同风速范围时,不同测点处机舱径向频率的均值明显大于切向频率,切向频率的离散性略大于径向频率。从均值上看,当风速小于7 m/s时,结构径向和切向频率值随着风速增大发生微弱波动;当风速位于7~12 m/s时,结构径向和切向频率随着风速增大而发生近似线性减小;当风速大于12 m/s时,结构径向和切向频率值基本稳定,随着风速增大而发生小幅值波动,这主要是因为风速大于12 m/s的数据样本量较少,不足以精确反映出高风速情况下的结构模态参数分布特性。从离散性上看,结构径向和切向频率的离散程度随着风速增大呈现略有下降趋势。从测点位置上看,底部#1测点结果的离散性略高于顶部#5测点。

    图  9  不同风速下的结构模态频率箱型图
    Figure  9.  Box diagram of modal frequency at different wind speeds

    分别绘制结构阻尼比与数据样本对应时长范围的平均风速、有效波高的关系,如图 10所示。

    图  10  不同风速和波高下的结构模态阻尼比
    Figure  10.  Damping ratios at different wind speeds and wave heights

    实际结构模态阻尼比是结构材料阻尼、气动力阻尼、土体阻尼和基础辐射阻尼的共同作用结果[12]。从图 10(a)(b)可以看出,不同测点的径向阻尼比与风速呈正相关,且随着风速升高,其相关性有变强的趋势;而模态切向阻尼比与风速间的相关性相对较差,且其离散性受风速波动的影响不大,这是因为径向方向为主要振动方向,强烈的筒-土相互作用使得土体辐射阻尼效应得以充分发挥[12],最终改变了结构模态径向阻尼比。相反的,切向方向非主振方向,土与筒型基础的相对位移较弱,辐射阻尼效应总体水平较低。

    图 10(c)(d)可以看出,不同测点的径向及切向阻尼比与波高的相关性均较差,表明波浪荷载非结构模态阻尼的主要影响因素。为更好地展现径向阻尼比与风速的相关性,绘制12组风速范围下径向阻尼比随风速变化的箱型图。

    图 11可知,风速范围位于3~6 m/s内的结构径向阻尼比均值呈上下波动趋势;当风速大于6 m/s时,结构径向阻尼比均值大体上呈波动上升趋势。从离散性上看,径向阻尼比的离散度随风速增大而发生小幅值波动,其基本不受风速变化的影响。此外,#1测点处的径向阻尼比整体大于#5测点。这可能是#1测点更靠近塔筒底部,受土体阻尼作用的影响更显著。

    图  11  不同风速下的结构阻尼比箱型图
    Figure  11.  Box diagram of modal damping ratio at different wind speeds

    为研究结构频率的时变性,分别给出了8~9 m/s及13~14 m/s平均风速范围下结构径向频率随时间的变化趋势,如图 12所示。

    图  12  结构径向频率随时间的变化
    Figure  12.  Radial modal frequencies at different time

    随着测试时间推移,不同测点处的结构频率均出现一定程度退化。自测试开始至约第150 d(第375组数据)间,结构频率维持在较高的衰减速度;而第150 d后的结构频率衰减速度放缓,部分风速范围对应的结构频率在测试后期进入了平稳发展阶段。

    实际上,本文研究的结构基频是结构特性、地基土特性、筒基础与地基土的接触作用特性3方面的综合体现。结构疲劳损伤、地基土弱(硬)化亦或筒-土接触作用的变化均会导致结构频率发生一定程度的改变。海洋环境下的结构疲劳损伤为渐变累积过程,结构损伤程度与时间呈正相关。前人的研究成果表明[13]:结构损伤会导致模态参数降低,且降低速率随损伤程度的增加而增大,即结构损伤导致的模态参数退化主要发生在后期阶段,这与本文中结构频率退化集中在初期阶段的规律并不同。因此,本文中的结构频率退化现象可排除结构损伤的影响,主要反映土体对筒型基础整体约束能力的下降。结合场地工程地质条件,从筒-土接触作用角度,分析可能有以下两种情况单独或同时发生:

    (1)筒-土界面刚度弱化作用:如前文所述,场地表层为松散-稍密的粉砂夹粉土,砂-筒界面附近一定范围的土体在长期循环剪切作用下会发生土颗粒重新排列,形成剪切带[14]。剪切带累积收缩导致筒-土界面刚度的持续弱化:这是因为循环剪切作用下,处于高位势的砂土颗粒降低到较低位势的状态,部分小颗粒进入到大颗粒间的孔隙,进而导致松砂出现剪缩[15]。室内砂与钢板的循环剪切试验还表明,钢板-土界面弱化主要发生在初始阶段,随着循环次数的增加,钢板-土界面弱化速率不断降低并趋于平缓[16],这与本文中结构频率退化速率随时间推移而降低的规律一致。

    (2)海底潮流冲刷作用:测试风电结构的基础处于复杂水文环境下,不可避免会出现一定程度的冲刷掏蚀现象。而冲刷作用一方面直接降低了筒-土接触面积,另一方面增加了风电结构裸露于地基土体外的长度,导致结构自振周期增大[17-18],这与本文中结构频率随时间推移而降低的现象相符。另外,本场地浅部的粉砂夹粉土层工程性能差,抗潮流冲刷能力弱,这与本文中结构频率快速退化阶段相对应;而地基深部为淤泥质粉质黏土层,抗潮流冲刷能力较强,符合本文中结构频率缓慢退化阶段的变化特征。

    本文以江苏如东复合筒型基础海上风电结构为研究对象,基于210 d的加速度监测数据,识别了550组不同环境激励下的结构模态参数,主要得到以下4点结论。

    (1)结构模态参数总体服从正态分布,径向频率主要集中在0.308~0.315 Hz,径向阻尼比主要集中在2.75%~3.5%,切向频率主要集中在0.302~0.306 Hz,切向阻尼比主要集中在2.25%~3.0%,测试期间结构加速度和频率均处于设计允许范围。

    (2)结构模态频率与风速之间呈负相关,且风速大于7 m/s后,相关性随着风速增大略有增加,离散性出现一定程度降低;结构模态频率与波高之间相关性始终较差,风荷载为风电结构振动特性的关键控制荷载。

    (3)结构切向阻尼比和径向阻尼比随风荷载的变化规律不同,模态径向阻尼比与风速呈正相关,且随着风速升高,相关性有变强的趋势;而模态切向阻尼比与风速间的相关性较差,离散性受风速的影响不大。

    (4)结构频率随时间推移出现了一定程度的退化,退化主要集中在测试期间的前150 d,反映出筒-土接触作用的减弱,可能表现为筒-土界面刚度弱化或海底潮流冲刷现象,后续可开展现场工作进行验证。

  • 图  1   模型箱示意图

    Figure  1.   Schematic diagram of model box

    图  2   孔隙水压力变化规律

    Figure  2.   Variation laws of pore water pressure

    图  3   土层位移变化规律

    Figure  3.   Variation laws of soil displacement

    图  4   双通道渗流示意图

    Figure  4.   Schematic diagram of dual-channel seepage

    图  5   基本工况模型示意图

    Figure  5.   Schematic diagram of model for basic working conditions

    图  6   降雨入渗模式转换示意图

    Figure  6.   Schematic diagram of rainfall infiltration mode conversion

    图  7   阶跃函数曲线

    Figure  7.   Curve of step function

    图  8   模型表面入渗率变化规律

    Figure  8.   Variation laws of surface infiltration rate of model

    图  9   土层饱和度分布

    Figure  9.   Distribution of soil saturation

    图  10   基本工况隧道拱顶沉降云图

    Figure  10.   Nephogram of vault settlement of tunnel under basic conditions

    图  11   基本工况隧道水平位移云图

    Figure  11.   Nephogram of horizontal displacement of tunnel under basic conditions

    图  12   基本工况隧道变形规律

    Figure  12.   Deformation laws of tunnel under basic condition

    图  13   工况1隧道变形规律

    Figure  13.   Deformation laws of tunnel under condition 1

    图  14   工况2隧道变形规律

    Figure  14.   Deformation laws of tunnel under condition 2

    图  15   模型表面入渗率变化规律

    Figure  15.   Variation laws of surface infiltration rate of model

    图  16   裂隙底部边界通量变化规律

    Figure  16.   Variation laws of flux at bottom boundary of fissures

    图  17   工况3隧道变形规律

    Figure  17.   Deformation laws of tunnel under working condition 3

    图  18   工况4隧道变形规律

    Figure  18.   Deformation laws of tunnel under working condition 4

    图  19   工况5隧道变形规律

    Figure  19.   Deformation laws of tunnel under working condition 5

    图  20   不同工况下的隧道拱顶沉降

    Figure  20.   Settlement of tunnel vault under different operating conditions

    图  21   不同工况下的隧道水平位移

    Figure  21.   Horizontal displacements of tunnel under different operating conditions

    表  1   各土层物理力学参数

    Table  1   Physical and mechanical parameters of soil layers

    土层 密度/(kg∙m-3) 含水率/% 孔隙率 弹性模量/MPa 泊松比 黏聚力/kPa 摩擦角/(°) 饱和渗透系数/(m∙s-1)
    砂质土层 1380 17.9 0.412 18 0.3 21 27 2.1e-5
    黏性土层 1500 16.7 0.385 25 0.3 25 30 1.3e-5
    下载: 导出CSV

    表  2   各区域非饱和水力参数

    Table  2   Unsaturated hydraulic parameters of various regions

    区域 模型 α/m-1 n l θr
    基质 VG 2.0 1.5 0.5 0.04
    裂隙 BC 2.68 0.131 0.5 0.04
    下载: 导出CSV

    表  3   模型参数

    Table  3   Model parameters

    Ks/(m·d-1) v0/(m·d-1) θs/% θr/% α/m-1 n H0/m
    1.39×10-5 4Ks 40 4 2.5 2.1 -0.4
    下载: 导出CSV

    表  4   多工况分析中各参数变化值

    Table  4   Change of various parameters in multi-operating condition analysis

    工况 参数变化
    1 裂隙位置X=30 m,裂隙宽度u=0.002 m,降雨强度V0=0.1 m·d-1
    2 裂隙位置X=25 m,裂隙宽度u=0.002 m,降雨强度V0=0.1 m·d-1
    3 裂隙位置X=20 m,裂隙宽度u=0.008 m,降雨强度V0=0.1 m·d-1
    4 裂隙位置X=30 m,裂隙宽度u=0.008 m,降雨强度V0=0.1 m·d-1
    5 裂隙位置X=25 m,裂隙宽度u=0.008 m,降雨强度V0=0.1 m·d-1
    下载: 导出CSV
  • [1] 蔡国庆, 韩博文, 韦靖威, 等. 复杂水-力路径下非饱和砂质黄土增湿变形特性[J]. 岩石力学与工程学报, 2022, 41(增刊1): 3073-3080.

    CAI Guoqing, HAN Bowen, WEI Jingwei, et al. Wetting deformation characteristics of unsaturated sandy loess under complex hydro-mechanical paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 3073-3080. (in Chinese)

    [2] 李锦辉, 郭凌波, 张利民. 考虑裂隙动态变化时裂隙土土水特征曲线的预测方法研究[J]. 岩石力学与工程学报, 2013, 32(6): 1288-1296.

    LI Jinhui, GUO Lingbo, ZHANG Limin. Prediction of swcc for unsaturated cracked soil considering development process of cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1288-1296. (in Chinese)

    [3]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x

    [4] 殷宗泽, 徐彬. 反映裂隙影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2011, 33(3): 454-459. http://cge.nhri.cn/article/id/13962

    YIN Zongze, XU Bin. Slope stability of expansive soil under fissure influence[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 454-459. (in Chinese) http://cge.nhri.cn/article/id/13962

    [5] 邵生俊, 杨春鸣, 焦阳阳, 等. 湿陷性黄土隧道的工程性质分析[J]. 岩土工程学报, 2013, 35(9): 1580-1590. http://cge.nhri.cn/article/id/15269

    SHAO Shengjun, YANG Chunming, JIAO Yangyang, et al. Engineering properties of collapsible loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1580-1590. (in Chinese) http://cge.nhri.cn/article/id/15269

    [6] 赖金星, 樊浩博, 来弘鹏, 等. 软弱黄土隧道变形规律现场测试与分析[J]. 岩土力学, 2015, 36(7): 2003-2012, 2020.

    LAI Jinxing, FAN Haobo, LAI Hongpeng, et al. In-situ monitoring and analysis of tunnel deformation law in weak loess[J]. Rock and Soil Mechanics, 2015, 36(7): 2003-2012, 2020. (in Chinese)

    [7]

    FRENELUS W, PENG H, ZHANG J Y. Seepage actions and their consequences on the support scheme of deep-buried tunnels constructed in soft rock strata[J]. Infrastructures, 2024, 9(1): 13. doi: 10.3390/infrastructures9010013

    [8]

    CHEN L L, WANG Z F, WANG Y Q. Failure analysis and treatments of tunnel entrance collapse due to sustained rainfall: a case study[J]. Water, 2022, 14(16): 2486. doi: 10.3390/w14162486

    [9]

    SI J L, LIU S P, ZHANG H J, et al. Failure investigation and treatments of tunnel entrance collapse in weak diatomaceous soil induced by heavy rainfall through coupling surface and groundwater flows[J]. Engineering Failure Analysis, 2023, 150: 107337. doi: 10.1016/j.engfailanal.2023.107337

    [10] 韩同春, 何露, 林博文, 等. 一种裂隙土的双重入渗模型及对边坡稳定的影响[J]. 华南理工大学学报(自然科学版), 2019, 47(5): 123-129, 138.

    HAN Tongchun, HE Lu, LIN Bowen, et al. Double infiltration model of fractured soil and its influence on slope stability[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(5): 123-129, 138. (in Chinese)

    [11] 开迪尔丁·吾拉木, 张紫昭, 张艳阳, 等. 基于COMSOL Multiphysics的降雨型滑坡临界降雨阈值计算模型研究: 以新疆新源县喀拉海依苏滑坡隐患体为例[J]. 工程地质学报, 2023, 31(4): 1364-1374.

    KAIDIERDING Wuramu, ZHANG Zizhao, ZHANG Yanyang, et al. Comsol multiphysic based calculation model of critical rainfall threshold for rainfall-induced landslide: a case study of karahayisu landslide in Xinyuan County, Xinjiang[J]. Journal of Engineering Geology, 2023, 31(4): 1364-1374. (in Chinese)

    [12] 曾铃, 史振宁, 付宏渊, 等. 降雨入渗对边坡暂态饱和区分布特征的影响[J]. 中国公路学报, 2017, 30(1): 25-34.

    ZENG Ling, SHI Zhenning, FU Hongyuan, et al. Influence of rainfall infiltration on distribution characteristics of slope transient saturated zone[J]. China Journal of Highway and Transport, 2017, 30(1): 25-34. (in Chinese)

    [13] 邱军领, 秦祎文, 赖金星, 等. 突发高压渗流作用下黄土地铁隧道水压阶跃效应分析[J]. 岩土工程学报, 2023, 45(4): 758-767. doi: 10.11779/CJGE20220062

    QIU Junling, QIN Yiwen, LAI Jinxing, et al. Step effects of hydraulic pressure of metro tunnels in loess under sudden high-pressure seepage[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 758-767. (in Chinese) doi: 10.11779/CJGE20220062

    [14] 张万志, 徐帮树, 曾仲毅, 等. 降雨入渗下膨胀性黄土隧道围岩破坏演化[J]. 东南大学学报(自然科学版), 2018, 48(4): 736-744.

    ZHANG Wanzhi, XU Bangshu, ZENG Zhongyi, et al. Research on failure evolution process of surrounding rock of swelling loess tunnel under rainfall infiltration[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 736-744. (in Chinese)

    [15] 高阳, 孙浩凯, 刘德军, 等. 强降雨影响下破碎复理岩地层隧道洞口段失稳机理[J]. 中南大学学报(自然科学版), 2019, 50(9): 2295-2303.

    GAO Yang, SUN Haokai, LIU Dejun, et al. Collapse mechanism of tunnel portal sectionin broken flysch under influence of heavy rainfall[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2295-2303. (in Chinese)

    [16] 谢强, 陈昱成, 傅翔, 等. 非饱和瞬态渗流的DDA流固耦合模型研究[J]. 岩土工程学报, 2024, 46(2): 299-306. doi: 10.11779/CJGE20221026

    XIE Qiang, CHEN Yucheng, FU Xiang, et al. Fluid-solid coupling model for discontinuous deformation analysis of unsaturated transient seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 299-306. (in Chinese) doi: 10.11779/CJGE20221026

    [17] 黄阜, 纪恒博, 王子钦, 等. 考虑土体非均质性和孔隙水压力耦合作用的地下连续墙槽壁稳定性研究[J]. 岩土工程学报, 2024, 46(3): 539-548. doi: 10.11779/CJGE20221401

    HUANG Fu, JI Hengbo, WANG Ziqin, et al. Stability of slurry trench walls considering coupling effects of soil heterogeneity and pore water pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 539-548. (in Chinese) doi: 10.11779/CJGE20221401

    [18]

    SHAO W, BOGAARD T, BAKKER M. How to use COMSOL multiphysics for coupled dual-permeability hydrological and slope stability modeling[J]. Procedia Earth and Planetary Science, 2014, 9: 83-90. doi: 10.1016/j.proeps.2014.06.018

    [19] 马慧. COMSOL Multiphysics基本操作指南和常见问题解答[M]. 人民交通出版社, 2009.

    MA Hui. COMSOL Multiphysics Basic Operation Guide and Frequently Asked Questions[M]. Beijing: China Communications Press, 2009. (in Chinese)

    [20] 年庚乾, 陈忠辉, 张凌凡, 等. 边坡降雨入渗问题中两种边界条件的处理及应用[J]. 岩土力学, 2020, 41(12): 4105-4115.

    NIAN Gengqian, CHEN Zhonghui, ZHANG Lingfan, et al. Treatment of two boundary conditions for rainfall infiltration in slope and its application[J]. Rock and Soil Mechanics, 2020, 41(12): 4105-4115. (in Chinese)

    [21] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.

    HOU Xiaoping, FAN Henghui. Study on rainfall infiltration characteristics of unsaturated fractured soil based on COMSOL Multiphysics[J]. Rock and Soil Mechanics, 2022, 43(2): 563-572. (in Chinese)

图(21)  /  表(4)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  15
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2025-02-28

目录

/

返回文章
返回