Centrifugal model tests on CFG pile-net composite foundation under super-large loads
-
摘要: CFG桩网复合地基广泛应用于处理软土地基。采用土工离心模型试验研究某码头堆场超大荷载下CFG桩网复合地基的变形和桩土应力特性,试验模拟了地基、CFG桩、树根桩、加筋垫层、防尘网和轨道梁基础、矿石堆载等,分析了超大荷载作用下复合地基表面变形、孔隙水压力、桩顶轴力、桩土应力比的变化规律。试验结果表明,复合地基的沉降速率在稳定控制标准之内,沉降量满足堆场使用要求,防尘网基础和轨道梁基础水平位移和沉降均很小,桩土应力比20~36。典型区CFG桩网复合地基在350 kPa荷载作用下是稳定安全的,达到了预期加固效果。
-
关键词:
- CFG桩桩网复合地基 /
- 变形 /
- 桩土应力 /
- 超大荷载 /
- 离心模型试验
Abstract: CFG pile-net composite foundation is widely used to reinforce soft soil foundation. Geotechnical centrifuge model test was carried out to study the deformation and pile-soil stress characteristics of CFG pile-net composite foundation under super large load in the storage yard of a wharf. The foundation, CFG piles, root piles, reinforced cushions, dust nets, track beam foundation and ore loads are simulated. The variation laws of the surface deformations, pore water pressures and loads at the top of the CFG piles and the pile-soil stress ratio of the composite foundation are analyzed under super-large loads. The settlement rate of the composite foundation is within the stability control standard, and the settlement meets the requirements of the storage yard. The horizontal displacements and settlements of the dust net foundation and the track beam foundation are small. The pile-soil stress ratio is 20~36. The test results show that the CFG pile-net composite foundation in the typical zone is stable and safe under the load of 350 kPa, and the foundation reinforcement has achieved the expected effects. -
0. 引言
西安地裂缝是20世纪50年代后期发现的,引起了人们的关注。1976年唐山地震后,西安地裂缝显著活动引起建筑物不均匀沉降而破坏。地质、工程界的研究,明确了西安地裂缝是地质构造运动而产生的认识[1-2]。20世纪80年代以来,进一步开展了西安地裂缝的原因、分布及活动规律的调查、监测研究,初步确定了其成因受南侧临潼-长安大断裂控制[2-5]。近年来,西安地裂缝活动加剧不仅受到周围地区地震作用影响,且与西安地区过量开采承压水产生相关。通过对西安地裂缝造成现有建(构)筑物破坏特征分析,地裂缝致灾机理是地裂缝上盘下沉,从而引起不均匀沉降、拉裂和错动位移,进而导致建筑物、地下洞室裂开和坍塌,路基、管道错动和断裂。同时,地表水沿地裂缝入渗和潜蚀,引起黄土湿陷不均匀沉降变形,对建(构)筑物造成二次破坏。西安地裂缝带来的危害性不仅体现在对于各类建(构)筑物生产建设的直接破坏,还会对工程场地土的性质与工程稳定性产生严重影响。从而严重地限制了建筑场地的使用,影响城市建设的合理布局[6-7, 9-10]。
对于这一特殊地质环境下的地铁隧道,特别是横穿地裂缝的隧道结构,衬砌结构沿纵向将承受比正常情况下大得多的附加应力和变形。附加作用表现为:①在地裂缝附近,上盘地层错动下沉可能脱空衬砌结构仰拱基底,或减小基底对衬砌结构的支撑作用,导致隧道衬砌发生剪切破坏;②地裂缝下盘对衬砌结构的约束作用,导致地裂缝附近衬砌结构承受拉应力;③上盘土体向下运动,引起该侧隧道结构变形,相当于弹性地基梁一端发生沉降的弯曲变形;④衬砌结构受地裂缝两侧土体的相运动,对隧道衬砌施加向下的作用力,引起隧道结构出现拉裂变形[6, 8]。地裂缝隧道设计了衬砌结构位移的预留空间[11]。由此可见,未采取措施的地裂缝隧道可能引起衬砌结构强度破坏和防水失效,不能保证正常运营。
为了揭示地裂缝隧道的力学特征和变形形态,需要分析地裂缝的产状和运动特征,以及地裂缝活动对衬砌结构的作用等。
1. 西安地裂缝分布与运动特征
西安地裂缝包括有显露地裂缝与隐伏地裂缝,是典型的黄土地区地质灾害现象。目前已发现14条地裂缝总延伸长度约103 km,分布在150 km2的黄土梁洼地貌范围内,单条地裂缝出露长度在2~12 km之间。其主要位于渭河断裂以南,临潼—长安断裂以北,向东西两侧(浐河至皂河)延伸。西安地裂缝由主裂缝、次生地裂缝和分枝地裂缝三部分组成,总体走向近似平行于临潼—长安断裂;总体倾向近似与临潼-长安断裂倾向相反,倾角约80°。西安地裂缝延伸长度可达数公里至十数公里,空间上呈不等间距平行排列,其分布范围内的地表由北向南呈逐渐升高的梁-洼地貌景观,如图1,2所示[5]。
地裂缝大都发育在“黄土梁”地貌的南侧陡坡上这一特定地貌构造部位。其垂直位移单向累积,断距随深度的增大而增大。地裂缝发育剖面如图3所示。
2. 西安地铁隧道穿越地裂缝的设计
2.1 地裂缝最大竖向预估位移量
西安地裂缝的发展经历了从发生阶段发展至剧烈活动到成熟阶段,随后缓慢变形直至稳定这一过程。地裂缝的最大位移估算如表1所示。
表 1 西安地裂缝最大垂直预估位移量[8]Table 1. Maximum predicted vertical displacements of ground fissures(mm) 地裂缝编号 A(预估极限值) A×1.5(设计值) 地裂缝编号 A(预估极限值) A×1.5(设计值) f2 200 300 f8 100 150 f3 150 225 f10 150 225 f5 300 450 f11 300 450 f6/f6' 300(200) 450(300) f9/f9' 300(250) 450(375) f7 300 450 f12 100 150 2.2 地裂缝区间隧道结构设计
地铁隧道穿越地裂缝不可避免,应遵从以下原则:以结构措施适应变形为主前提下,在地裂缝处理段需须对结构进行分段预留必要的变形空间适应地裂缝的变形;加强断面结构抵抗变形对结构的破坏;变形缝处在结构发生变形时应当能够保持防水的效果。地裂缝活动主变形区范围根据地裂缝活动引起附近地层的活动变形范围确定为:上盘0~6 m,下盘0~4 m;微变形区上盘6~20 m,下盘4~15 m。上盘变形影响范围大于下盘。隧道衬砌结构为了适应地裂缝活动的变形应在地裂缝处应设置变形缝[6, 8]。如4, 5所示。
3. 地裂缝隧道的数值分析
3.1 地裂缝隧道衬砌结构及地层条件的模型
西安地铁二号线地裂缝区段隧道一般采用马蹄形隧道断面,以正交穿越地裂缝的地铁2号线为分析对象,地裂缝区间隧道采用CRD开挖方法,最大断面净空宽为8.3 m,高为8.45 m;初衬为C25喷射混凝土,厚30 cm;二衬为C30模注钢筋混凝土,厚50 cm。衬砌结构沿纵向每10 m或15 m预设10 cm宽的变形缝,充填密封防渗材料封闭变形缝。以便衬砌结构适应地裂缝上下盘土体相对运动,避免衬砌结构附加拉应力,防止基底出现脱空现象。并且在衬砌结构端部局部加厚以便适应可能出现的应力集中现象。
西安地铁地裂缝隧道通过FLAC-3D有限差分软件建立了计算模型。计算模型隧道埋深为10 m,横断面内水平向宽度为80 m,竖向高度为60 m,轴向长度为200 m。模拟地层埋深0~7.5 m为晚更新世风积黄土,埋深7.5~25.5 m为晚更新世粉质黏土及古土壤层,埋深25.5~30.5 m为中更新世黄土及古土壤层,以及埋深30.5 m以下为中更新世粉质黏土。地裂缝采用库仑摩擦接触面模拟;应力应变关系采用莫尔-库仑屈服条件的弹塑性模型描述;地层及二次衬砌结构采用实体单元模拟;初期衬砌结构采用壳单元模拟。
在地裂缝活动导致自由场地地面不均匀沉降如图6所示条件下,衬砌结构错动位移如图7,8和图9所示。衬砌结构变形缝最大挤压变形为3.6 cm,位于地裂缝处变形缝两侧衬砌拱底;最大张拉变形为5.7 cm,位于上盘内邻近地裂缝衬砌结构变形缝的拱底处。衬砌结构变形缝预留10 cm,满足最大挤压变形的要求。衬砌结构大、小主应力如图10,11所示。大主应力受拉的集中区域主要分布在衬砌结构内侧腰部,最大值为2.02 MPa;小主应力受拉的区域也分布于此。地裂缝两侧衬砌结构内侧腰部受拉,应进行加强处理。隧道衬砌结构采用C30混凝土,其抗压强度为30 MPa,抗拉强度为2.01 MPa,添加钢纤维可满足受拉的强度要求。
4. 地裂缝隧道结构与轨道工程措施
在地裂缝区间段隧道运行100 a后,地裂缝会导致隧道下沉500 mm。为保证隧道具有列车运行的空间,在隧道截面扩构段,二衬结构加大截面厚度及增加配筋,提高纵向分布筋直径及间距的方法抵抗扭转、剪切对结构的影响。地裂缝隧道段的初期支护和内衬之间增设沥青混凝土复合衬砌,在初期支护和二次衬砌之间形成夹层,利用沥青混凝土特有的延展性、流变性,密封衬砌结构变形缝。随着地裂缝活动,沥青混凝土在围岩压力作用下沿侧向产生挤出变形,从围岩压力大的部位向围岩压力小的部位流动,使得围岩压力趋于均匀化。当地裂缝活动导致衬砌结构错动变形时,沥青混凝土易产生流变剪切变形,适应衬砌结构变形缝的变化,可发挥其防渗能力。沥青混凝土变形缝构造与变形模型试验结果如图12,13所示。
5. 结论
(1)西安临潼—长安断裂带是地裂缝产生的构造活动,过量开采承压水产生不均匀沉降是地裂缝发展的附加作用。准确预测地裂缝的位移量,是地裂缝隧道结构设计的重要依据。
(2)西安地铁二号线地裂缝影响段65 m设变形缝,在地裂缝影响范围内,主变形段通常占地裂缝80%~90%的总垂直位移量,是主要的设防区,按10 m进行隧道分段。微变形段垂直位移量仅占10%~20%的总位移量,按10~15 m进行隧道分段。
(3)地裂缝隧道结构应采取衬砌结构适应地裂缝变形的原则。在地裂缝处理段需对结构进行分段,预留必要的变形空间作为变形缝以适应地裂缝的变形。加强变形缝断面的结构,以便满足抵抗变形对结构破坏的要求。
(4)衬砌结构内侧拱腰分布拉应力集中区,需提高衬砌结构混凝土的抗拉强度。采取加筋沥青混凝土复合衬砌及沥青玛蹄脂填充变形缝处理,可改善衬砌结构受力条件,密封衬砌结构变形缝,保持防水的效果。
-
表 1 土的物理力学性质指标
Table 1 Physical and mechanical properties of soils
土名 厚度/m 含水率/% 密度/(g·cm-3) 不排水强度/kPa 素填土①2 2.48 32.0 1.91 25 淤泥质黏土②1 6.20 50.8 1.72 31 粉质黏土③4 3.50 31.0 1.92 41 中粗砂③2 1.70 1.85 黏土④1、④2 42.3 1.77 51 表 2 复合地基表面变形特征值
Table 2 Surface deformations of composite foundation (mm)
测点 时间节点 堆载期 试堆期 恒载365 d 恒载408 d 沉降 Sa1 -22 -9 39 42 Sa2 50 82 175 181 Sa3 139 210 399 411 Sa4 149 208 366 375 Sa5 -20 -2 71 76 水平位移 Db1 -4 -9 -28 -30 Db5 0 11 44 45 表 3 复合地基孔隙水压力特征值
Table 3 Pore water pressures of composite foundation
时间节点 测点 U1 U4 孔压/kPa 孔压系数 孔压/kPa 孔压系数 堆载期 27 0.08 117 0.34 试堆期 48 0.14 180 0.51 峰值 50 0.14 205 0.59 (恒载32 d) (恒载85 d) 恒载365 d 33 0.09 198 0.57 恒载408 d 32 0.09 197 0.56 表 4 复合地基CFG桩顶轴力特征值
Table 4 Loads at top of CFG piles
测点 Tf1 Tf2 Tf3 Tf4 桩长、间距/m 10,1.8 14,1.8 16,1.8 16,1.65 上覆荷载/kPa 150 232 319 350 轴力/
kN堆载期 184 344 539 543 试堆期 185 349 522 528 恒载365 d 190 354 475 496 恒载408 d 191 353 474 495 表 5 复合地基桩土应力比特征值
Table 5 Pile-soil stress ratios of composite foundation
测点 Tf1 Tf2 Tf3 Tf4 堆载期 桩身应力/MPa 1.92 3.58 5.61 5.66 桩间土压力/kPa 96 130 157 156 桩土应力比 20 28 36 36 恒载408 d 桩身应力/MPa 1.99 3.68 4.94 5.16 桩间土压力/kPa 94 127 178 174 桩土应力比 21 29 28 29 -
[1] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 96–115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201601013.htm LIU Han-long, ZHAO Ming-hua. Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49(1): 96–115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201601013.htm
[2] 何宁, 娄炎, 娄斌. CFG桩复合地基加固桥头深厚软基[J]. 水利水运工程学报, 2010(4): 89–94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004018.htm HE Ning, LOU Yan, LOU Bin. Improvement of deep and thick soft foundation at the end of a bridge by using CFG pile composite foundation[J]. Hydro-Science and Engineering, 2010(4): 89–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004018.htm
[3] 李继才, 郦能惠, 丛建, 等. 大型储罐CFG桩复合地基变形性状和变刚度调平设计[J]. 岩土工程学报, 2018, 40(6): 1111–1116. doi: 10.11779/CJGE201806017 LI Ji-cai, LI Neng-hui, CONG Jian, et al. Deformation behaviors and variable rigidity design with equilibrium settlement for CFG pile composite foundation of large storage tanks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1111–1116. (in Chinese) doi: 10.11779/CJGE201806017
[4] 顾行文, 谭祥韶, 黄炜旺, 等. 倾斜软土CFG桩复合地基上的路堤破坏模式研究[J]. 岩土工程学报, 2017, 39(增刊1): 111–115. doi: 10.11779/CJGE2017S1022 GU Xing-wen, TAN Xiang-shao, HUANG Wei-wang, et al. Failure mechanisms of embankment on inclined soft foundation reinforced by CFG Piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 111–115. (in Chinese) doi: 10.11779/CJGE2017S1022
[5] 张树明, 蒋关鲁, 廖祎来, 等. 加固范围及边坡坡率对CFG桩–网复合地基受力变形特性影响分析[J]. 岩石力学与工程学报, 2019, 38(1): 192–202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201901016.htm ZHANG Shu-ming, JIANG Guan-lu, LIAO Yi-lai, et al. Effect of the strengthening area and the slope rate on bearing and deforming behaviors of CFG pile-geogrid composite foundations[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 192–202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201901016.htm
[6] 潘高峰, 刘先峰, 袁胜洋, 等. 云桂客专CFG桩网结构路堤侧向变形规律试验研究[J]. 岩土力学, 2020, 41(增刊2): 1–11. PAN Gao-feng, LIU Xian-feng, YUAN Sheng-yang, et al. Lateral deformation of embankment with the CFG pile-net structure for Yun-Gui passenger dedicated line[J]. Rock and Soil Mechanics, 2020, 41(S2): 1–11. (in Chinese)
[7] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483–1493.
[8] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报, 2018(2): 43–51. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm JIANG Yan-bin, HE Ning, LIN Zhi-qiang, et al. Numerical simulation of pipe pile composite foundation of deep soft foundation under embankment[J]. Hydro-Science and Engineering, 2018(2): 43–51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm
[9] 王年香, 章为民. 土工离心模型试验技术与应用[M]. 北京: 中国建筑工业出版社, 2015. WANG Nian-xiang, ZHANG Wei-min. Centrifugal Model Test Technology and Its Application[M]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[10] 蔡正银, 徐光明. 港口工程离心模拟技术[M]. 北京: 科学出版社, 2020. CAI Zheng-yin, XU Guang-ming. Centrifugal Simulation Technology of Port Engineering[M]. Beijing: Science Press, 2020. (in Chinese)
-
期刊类型引用(4)
1. 史治文. 西安地铁八号线地裂缝隧道暗挖施工技术与沉降控制措施研究. 结构工程师. 2024(05): 137-142 . 百度学术
2. 秦璐. 考虑地裂缝影响的盾构隧道变形破坏机制试验研究. 九江学院学报(自然科学版). 2023(03): 47-51 . 百度学术
3. 苗晨阳,黄强兵,苟玉轩,滕宏泉,贾少春. 地裂缝场地盾构隧道下穿施工对既有管廊的影响研究. 现代隧道技术. 2022(03): 155-165+171 . 百度学术
4. 赵阳川. 某铁路隧道衬砌裂缝对结构安全的影响分析. 工程建设与设计. 2022(17): 97-101 . 百度学术
其他类型引用(2)