Deep-water detection, monitoring, early warning and treatment of emergencies of major water conservancy projects: a review
-
摘要: 中国高坝建设水平世界领先,但安全运行保障水平相对滞后,应对洪水、强震、地质灾害、异常干旱或低温、恐怖破坏等极端事件的应急保障能力相对薄弱,安全风险不容忽视。从基础与应用基础、应用技术研发、集成示范与推广3个层面进行综述,包括:非常规条件下大坝性能演化与灾变机理、极端条件下大坝安全诊断和风险控制、大坝失事早期预警标准与应急响应机制等基础理论研究;大坝深水检测载人潜水器、大坝深水渗漏探测、深孔泄水建筑物疏堵与闸门修复、大坝突发事件应急监测与隐患快速探测、深水环境大坝缺陷修补、极端条件下大坝应急抢险与损毁快速修复等关键技术研发;100 m级深水环境大坝安全检测技术集成示范,极端条件下大坝溃决早期预警与应急处置技术推广应用。对最新研究进行了综述和总结,并对今后的主要发展方向提出了建议。Abstract: The construction level of high dams in China is leading in the world, but the guarantee level of their safety operation is relatively lagging behind. The high dams have relatively weak emergency support capability to deal with the extreme events such as flood, strong earthquake, geological disaster, abnormal drought, low temperature and terrorist destruction, thus their safety risks cannot be ignored. The review is carried out from three aspects: foundation and application basis, technical research and development, integrated demonstration and promotion. It includes: (1) The basic theoretical researches such as dam performance evolution and disaster mechanism under unconventional conditions, dam safety diagnosis and risk control under extreme conditions, early warning standards and emergency response mechanisms of dam failure; (2) Key technologies such as human-occupied vehicles for deep-water inspection of dams, deep-water leakage detection of dams, dredging and gate repair of deep-hole drainage structures, emergency monitoring of dams and rapid detection of their hidden dangers, defect repair of dams in deep water environment, emergency rescue and rapid repair of damage of dams under extreme conditions; (3) The integration demonstration of dam safety detection in 100 m-deep water, and the application and dissemination of early warning and emergency response of dam failure under extreme conditions. The latest researches on these issues are reviewed and summarized, and the relevant suggestions for the main development direction in the future are proposed.
-
0. 引言
随着中国煤炭资源开采大范围向深部转移,冲击矿压(也称“冲击地压”)灾害日益凸显,严重影响煤矿安全生产[1]。冲击矿压主要是由采矿活动引起的煤岩结构局部应力集中引起,大量研究表明,在应力异常集中区(如断层、褶曲、煤柱区等),更容易发生冲击矿压[2]。
此外,相变构造区似乎也会增加煤层的异常应力集中[3]。国内外学者针对相变构造区诱发冲击矿压的研究,大多集中在煤层厚度变化诱发冲击矿压方面,针对坚硬覆岩厚度变化导致应力异常及诱冲效应的研究较少。孙振武[4]根据地应力场测量和矿压观测结果,发现在局部煤层厚度变化的区域往往会发生构造应力异常现象;Álvarez-Fernández等[5]运用数值模拟分析了分段崩落法开采煤层时,由于煤层厚度变薄导致在某超前巷道应力显著增大、变形较大的具体情况;Zhu等[6]通过现场观测和数值分析,研究了煤厚变化区初始应力场及采动应力场的分布规律;南存全等[7]研究发现,当工作面接近煤厚变异区时,煤厚变异区对工作面超前支承压力分布特征影响显著;王勇等[8]分析了不同煤层厚度变化条件下应力及能量分布规律;赵同彬等[9]研究了煤层厚度变化对超前支承压力及能量演化规律的影响,揭示了煤厚变异区冲击矿压发生的力学机制。
关于坚硬覆岩厚度变化与煤层厚度变化诱发冲击矿压机理的问题,其实质都是在厚度变化区产生局部应力集中,但是覆岩厚度变化不像煤厚变化能随着工作面的推进直观表现出来,只能从部分钻孔了解覆岩的分布情况。因此,坚硬覆岩厚度变化诱发冲击矿压的问题很难引起研究人员的注意。
针对现有研究成果的局限性,本文针对中国内蒙深部矿区坚硬覆岩厚度变化区煤层开采诱发冲击矿压机理问题,采用弹性力学理论对坚硬覆岩厚度变化区的构造应力特征进行力学分析,试图揭示覆岩厚度变化区应力异常分布的成因机制;并利用FLAC3D数值模拟研究覆岩厚度变化区工作面超前支承压力分布特征以及煤壁前方的能量演化规律,进一步探讨坚硬覆岩厚度变化区煤层开采诱发冲击矿压的机理。
1. 覆岩厚度变化区煤层应力异常形成机制
当煤岩体的应力不超过弹性范围时,最适宜用弹性力学的方法解析煤岩地下工程的力学行为[10]。原岩应力条件下,煤层及顶底板未受采掘扰动影响,假设煤岩体均未超过其弹性范围,可将覆岩厚度变化区简化为覆岩1、覆岩2两个组合的弹性元件[9]。其整体力学属性由两个弹性元件串联、并联组合表示,模型如图 1所示。
由图 1可知,在覆岩厚度变化区,区域一、区域二、区域三的弹性模量均为覆岩1、覆岩2的弹性模量串联组成,其等效弹性模量E为
1E=H1H⋅ER1+H2H⋅ER2, (1) 式中:H1,H2分别为区域一覆岩1、覆岩2的厚度;ER1,ER2分别为覆岩1、覆岩2的弹性模量。
根据煤岩体应力应变关系可知:
σ=Eε。 (2) 本模型内区域一、区域二、区域三相互并联,故区域一、区域二、区域三的应变εa,εb,εc相等;同时串联部分应力相等,联立式(1),式(2)可得覆岩变化区下方煤层应力关系为
σaσc=E1E3=H′2⋅ER1+H′1⋅ER2H2⋅ER1+H1⋅ER2, (3) 式中:σa,σc为区域一、区域三覆岩厚度变化区下方的应力,H′1,H′2为区域三覆岩1、覆岩2的厚度。
为了定性分析覆岩厚度变化区下方的应力分布情况,假设区域一覆岩1和覆岩2的厚度H1和H2保持不变,将式(3)优化为ER2/ER1和H1'/H1的函数:
σaσc=[HH1 + H′1H1⋅(ER2ER1−1)]/[HH1 + (ER2ER1−1)]。 (4) 对于坚硬顶板赋存条件ER1>ER2,区域一坚硬覆岩厚度H1大于区域三坚硬覆岩厚度H′1。由式(4)可知,区域一所受的应力σa大于区域三所受的应力σc,即覆岩变厚区的构造应力比覆岩变薄区大。
为研究ER2/ER1与H′1/H1变化对σa/σc的影响,控制式(4)中的自变量,将H/H1设为定值;同时ER2/ER1与H′1/H1的数值仅代表覆岩性质及厚度变化的一个趋势,不做实际情况下精确数值的讨论。图 2(a)为覆岩厚度比值一定的情况下,构造应力比值与覆岩弹性模量比值关系图,H1'/H1一定,σa/σc随ER2/ER1增加呈反比例关系,即两覆岩性质相差越大,构造应力变化越大。图 2(b)为覆岩性质一定的情况下,构造应力比值与覆岩厚度变化关系图,当ER2/ER1一定,σa/σc随H1'/H1增加呈线性递减关系,说明坚硬覆岩厚度变化越大,构造应力变化越大。
2. 覆岩厚度变化区煤层开采应力与能量分布特征
2.1 覆岩厚度变化区煤层开采数值模型建立
为研究坚硬覆岩厚度及性质变化对煤层应力分布特征的影响,本文以某矿煤层基本顶的厚度及性质变化为例,利用FLAC3D建立覆岩厚度变化区煤层开采数值计算模型。模型尺寸x×y×z为300 m×400 m ×150 m,覆岩变化区为y轴中部100 m范围,其它模型参数如图 3所示。初始应力状态下,假设煤岩均处于线弹性状态,模型本构设置为Elastic弹性模型[11]。
许家林等[12]基于岩层控制关键层理论指出,只有关键层上部的载荷可以简化为均布载荷。因此,本文在模型顶部设置一层20 m厚的关键层;模拟煤层埋深约700 m,在模型顶部施加15 MPa的均布载荷,重力加速度为10 m/s2;底部固定x,y,z方向的位移;x,y方向为固定边界,并在x,y方向施加水平渐变应力,x,y方向应力系数分别设为1.0和1.5。
模型材料参数以某矿实际的煤岩力学参数为基准,对材料参数进行简化处理[13],如表 1所示。模拟方案主要为:方案一:模拟H1=60 m,H′1=30 m,ER2=10 GPa,ER1为15,20,25,30,35 GPa 5种情况下,覆岩性质变化对煤层初始应力分布特征的影响;方案二:模拟ER1=30 GPa,ER2=10 GPa,H1=60 m,H1'为10,20,30,40,50 m 5种情况下,覆岩厚度变化对煤层初始应力分布特征的影响。
表 1 模型选用参数Table 1. Model parameters序号 岩性 厚度/m 密度/(kg·m-3) 弹性模量/GPa 泊松比 1 细粒砂岩 20 2400 20 0.20 2 中粒砂岩 30* 2500 30* 0.15 砂质泥岩 30* 2200 10 0.25 3 砂质泥岩 10 2200 10 0.25 4 细粒砂岩 20 2400 20 0.20 5 煤层 6 1400 5 0.30 6 砂质泥岩 14 2200 10 0.25 7 细粒砂岩 20 2400 20 0.20 注:表中带“*”参数为方案一、方案二中的可变量。 2.2 覆岩厚度变化区煤层初始应力分布特征
图 4所示为不同方案下煤层内初始应力分布规律,由图 4(a)可知,由覆岩较薄区至覆岩较厚区,煤层内初始应力由均布状态逐渐减小,然后随着覆岩厚度的增加而增加,当处于覆岩较厚区时,初始应力又逐渐减小,最终恢复至均布状态;并且最大(最小)应力值随覆岩弹性模量比的增加而增加(减小)。由图 4(b)可知,初始应力分布规律与方案一相似,最大(最小)应力值随覆岩厚度变化率的增加而增加(减小)。
由于在模型顶部施加了15 MPa的均布载荷,因此,坚硬覆岩性质及其厚度变化对煤层初始应力的影响程度为煤层内的应力值减模型顶部均布载荷之后的比值,如图 5所示。方案一中H′1/H1不变,覆岩弹性模量ER2/ER1由10/35增加至10/15时,煤层内应力变化比值呈反比例函数由1.70降到1.21;方案二中ER2/ER1不变,覆岩厚度情况H′1/H1由1/6增加至5/6,煤层内应力变化比值呈线性关系由2.14递减至1.22。这与理论分析式(4)所得规律一致。
2.3 覆岩厚度变化区煤层采动应力分布特征
煤岩体所受应力在采动应力影响下会超过其峰值应力,煤岩体进入全应力应变曲线的峰后阶段,而应变软化模型能很好的反映煤岩体的峰后破坏阶段[14]。因此,将工作面回采过程中的煤岩体本构模型设置为应变软化模型,煤岩体应变软化参数的设置参考文献[14],如表 2所示,其余模型参数见表 1。
表 2 煤岩体应变软化参数Table 2. Strain-softening parameters of coal and rock塑性应变 中粒砂岩 砂质砂岩 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 0 10.00 36 18 5.00 28 12 1×10-4 6.00 32 10 3.00 24 6 2×10-4 4.00 28 5 2.00 22 2 5×10-4 2.00 24 0 1.00 20 0 1 2.00 24 0 1.00 20 0 塑性应变 细粒砂岩 煤层 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 0 8.00 32 16 4.00 25 10 1×10-4 5.00 28 8 2.00 22 5 2×10-4 3.00 24 4 1.00 20 2 5×10-4 1.50 22 0 0.50 18 0 1 1.50 22 0 0.50 18 0 为研究覆岩厚度变化对工作面回采的影响,采用的开挖模型为:H1=H1'=60 m,覆岩厚度不变;H1= 2H′1=60 m,覆岩厚度发生改变。煤层回采方式包括沿覆岩由厚向薄推进和沿覆岩由薄向厚推进,如图 6所示。为消除边界效应对工作面回采的影响,在工作面两侧留50 m的边界煤柱。此外,工作面每开挖20 m,计算一次平衡。
工作面回采过程中,煤岩体内应力重新分布并在工作面超前区域形成应力集中区。为研究覆岩厚度变化对工作面回采超前支承压力的影响,在煤层中部,x=150 m,z=37 m处布置一条测线,将工作面沿覆岩由薄向厚回采、由厚向薄回采与沿覆岩厚度不变回采的超前支承压力进行对比分析。定义应力突变系数为工作面沿覆岩厚度变化推进的超前支承压力与沿覆岩厚度不变推进的超前支承压力之比。限于篇幅,本文选用超前工作面10,20,30,40,50 m处的支承压力进行对比分析,如图 7所示。
由图 7(a)可以看出,当工作面沿覆岩由薄向厚推进时,应力突变系数呈先减小后升高再减小的趋势。工作面在覆岩较厚区,应力突变系数最大,平均为1.042;在覆岩较薄区,应力突变系数最小为0.947,同时超前距离越近,应力突变系数越接近1,表明距离回采位置越近,受超前支承压力影响越大,受覆岩厚度变化影响较小。
由图 7(b)可得,当工作面沿覆岩由厚向薄推进时,超前工作面的应力突变系数有先增加后降低再升高的趋势。工作面在覆岩较厚区,应力突变系数最大约为1.039;在覆岩较薄区,应力突变系数最小为0.943,同时超前距离越近,受超前支承压力影响越大,受覆岩厚度变化影响较小。
通过分析可知,应力突变系数最大的区域,均在覆岩较厚区至覆岩变化区范围,当工作面推进至此区域时,超前支承压力与突变的构造应力进行叠加,增加了冲击矿压发生的可能性。因此,工作面在坚硬覆岩厚度变化区推进时,在覆岩较厚区至覆岩变化区应力集中系数最大,当工作面推进至此区域时,因重点关注此区域的应力异常情况,必要时进行卸压处理。
2.4 覆岩厚度变化区煤层开采能量分布特征
谢和平等[15]指出,处于三向应力状态下的工程岩体常常面临卸载破坏的危险,并且煤岩体单元在卸载过程中释放的弹性能密度为
WE=σ21+σ22+σ23−2ν⋅σ1⋅σ2−2ν⋅σ2⋅σ3−2ν⋅σ1⋅σ32E, (5) 式中:σ1,σ2,σ3为最大、中间、最小主应力;E为弹性模量;ν为泊松比。
为研究覆岩厚度变化对工作面回采煤壁前方积聚弹性应变能演化规律的影响,由式(5)得出了工作面回采过程中模型内储存的弹性能密度。为了更直观地反映工作面回采过程中煤层内的能量聚积情况,将工作面回采过程中每一步的弹性能密度云图进行切片(切片取z=37 m)、组合处理,如图 8所示。
工作面沿覆岩由薄向厚推进时,除了在工作面开挖附近出现了能量聚积区,还在覆岩较厚区出现第二个能量聚积区;随工作面继续向覆岩厚度变化区推进,能量聚集区范围增加,冲击危险性增加。工作面沿覆岩由厚向薄推进时,仅在工作面前方出现一个能量聚集区,该能量聚集区在覆岩较厚区至覆岩变化区范围较大,冲击危险性更高;随工作面继续推进,能量聚集区范围逐渐减小。
3. 覆岩厚度变化区煤层开采诱发冲击矿压机理
冲击矿压发生的“动静载叠加诱冲原理”表示,采掘空间周围煤岩体中的静载荷与矿震形成的动载荷叠加超过煤岩体发生冲击的最小载荷时,就容易诱发冲击矿压[16-17],即
σs+σd⩾σbmin, (6) 式中:σs为煤岩体静载应力,σd为矿震动载,σbmin为冲击矿压的临界应力。
根据覆岩厚度变化区煤层开采过程中超前支承压力分布特征及动静载叠加诱冲原理,得出了不同回采方式下覆岩厚度变化区煤层开采诱发冲击矿压的机理,如图 9所示。
当工作面沿覆岩由薄向厚推进时,超前支承压力由变薄区向变厚区传递,煤层中的静载应力相比覆岩厚度不变时有先减小后升高的趋势,在覆岩较厚区会形成应力的第二峰值区。当工作面前方覆岩破断诱发动载时,动载荷与静载荷相互叠加,可能会出现两个冲击矿压潜在发生区,即:工作面前方超前支承压力峰值区和应力第二峰值区与动载荷叠加诱冲区。其中第二峰值区与动载荷叠加诱冲区位于工作面前方,产生的冲击能量将主要向工作面两巷或者工作面临空面释放,冲击矿压影响范围增加。
当工作面沿覆岩由厚向薄推进时,超前支承压力由变厚区向变薄区传递,煤层中的静载应力相比覆岩厚度不变时先升高后减小,仅在超前支承压力影响范围与覆岩较厚区形成一个峰值应力;与动载荷叠加时,形成一个冲击矿压潜在发生区,但是该区域相对覆岩厚度不变时影响范围更大、冲击能量更高。
因此,工作面在覆岩较厚区至覆岩厚度变化区回采时,煤壁前方超前支承压力与突变的构造应力进行叠加,积聚的弹性能增加,更容易诱发冲击矿压。冲击矿压防治的主要工作是降低覆岩变化区第二峰值应力,将应力集中区向煤岩体深部转移。
4. 覆岩厚度变化区工程案例分析
4.1 工作面沿覆岩由薄向厚推进案例分析
(1)工程概况
伊泰某矿103工作面为矿井一采区的第2个回采工作面,东南侧为实体煤;西北侧为101采空区,两者留有两个30 m宽的双煤柱;东北邻南翼辅运大巷;西南方向开切眼为实体煤柱。工作面设计推进长度2480 m,宽度210 m,主采3-1煤层,煤层埋深平均706.3 m,煤层厚度约6.7 m,倾角1°~3°,平均倾角2°,为近水平煤层。
统计103工作面附近的钻孔,并绘制出覆岩厚度变化等值线图,发现在3-1煤层上方近200 m范围主要存在一层较厚的坚硬顶板,该覆岩位于煤层上方20 m左右,层厚在60~110 m;经计算可知,该岩层为工作面覆岩结构的关键层。随着工作面的推进,该覆岩由薄变厚,如图 10所示。
(2)案例分析
103工作面自2018年3月开始回采以来,大能量事件频发,103辅运顺槽出现了不同程度的动力显现,造成巷道多次破坏和设备损坏,破坏以巷道底板的瞬间开裂、底鼓为主。通过分析微震监测数据,可判断煤岩体的应力分布状态及覆岩运移规律[18]。统计分析103工作面回采期间的微震数据与坚硬覆岩厚度变化的关系,以103临空顺槽做剖面,如图 11所示。
103工作面回采期间,位于工作面前方的微震事件频次占比87.7%,微震能量占比91.0%,表明103工作面回采期间微震事件与工作面前方煤岩体应力分布状态关系较大。同时,微震频次、能量的分布情况与覆岩厚度变化存在一定的对应关系,工作面沿覆岩由薄向厚推进时,工作面推进位置前方微震能量、频次均处于较大的水平,工作面冲击危险性较高,此时对应于冲击矿压的潜在发生区Ⅰ,主要由工作面采动引起的超前支承压力造成;在坚硬覆岩较厚区域,微震频次及<103 J的微震总能量存在极大值,此时对应于冲击矿压的潜在发生区Ⅱ,主要受超前支承压力与突变的构造应力叠加影响。
4.2 工作面沿覆岩由厚向薄推进案例分析
(1)工程概况
中煤某矿3102工作面为矿井第2个回采工作面,主采3-1煤层,工作面走向长5540 m,倾向宽300 m,东侧为实体煤,西侧与3101采空区相邻,南侧为井田边界,北侧为3-1煤辅助回风巷,区段煤柱宽度35 m。该工作面煤层埋深690~700 m,煤层厚度4.35~5.47 m,倾角1°~4°,平均倾角2°,为近水平煤层。
统计3102工作面附近的钻孔,并绘制出覆岩厚度变化等值线图,发现在3-1煤层上方近200 m范围主要存在一层厚度变化较大的坚硬顶板,该覆岩位于煤层上方40 m左右,层厚在40~60 m。随着工作面的推进,该覆岩由厚变薄,如图 12所示。
(2)案例分析
3102工作面自2017年8月开始回采,大能量事件频发,3102回风巷出现了不同程度的帮鼓、顶板下沉、底鼓、单体损坏等冲击显现情形。统计分析3102工作面回采期间所有的微震数据与坚硬厚度变化的关系,以3102临空巷做剖面,见图 13。
3102工作面回采期间,微震事件大多位于工作面前方,其中微震事件频次占比62.3%,微震能量占比87.1%。工作面沿覆岩由厚向薄推进时,在坚硬覆岩较厚区至覆岩厚度变化区,微震总频次分布较多,极大值分布在坚硬覆岩厚度较大的区域;并且小于103 J的微震总能量与微震频次具有相似的分布规律。表明在覆岩较厚区至覆岩厚度变化区的冲击危险性较高,此时对应于工作面沿覆岩由厚向薄推进时的冲击矿压潜在发生区,主要受超前支承压力与突变的构造应力叠加影响。
以上分析可知,工作面沿覆岩厚度变化区回采期间,微震事件大多分布在工作面前方,与煤岩体应力分布状态关系较大;同时,微震频次及能量小于103 J的微震总能量与坚硬覆岩厚度变化相关性较好。工作面受超前支承压力与突变的构造应力叠加影响,静载应力较大,煤岩体产生较多的微裂隙,导致坚硬覆岩厚度变化区至覆岩较厚区微震事件频发。这与前文研究成果相符。
5. 结论
(1)基于弹性力学理论分析了坚硬覆岩厚度变化区的力学机制,结果表明,覆岩变厚区的构造应力比覆岩变薄区大,覆岩厚度变化越大或覆岩之间弹性模量相差越大,覆岩厚度变化区构造应力变化越大。
(2)采用数值模拟方法研究了坚硬覆岩厚度及物理力学性质变化对煤层构造应力分布特征的影响,结果表明,自覆岩较薄区到覆岩较厚区,构造应力均有先减小后增大再减小的趋势,覆岩厚度变化越大或覆岩物理力学性质差异越大,应力变化比值越大。
(3)工作面在覆岩厚度变化区开采时,受超前支承压力与突变的构造应力叠加影响,覆岩厚度变化区至覆岩较厚区应力集中程度较大,该区域积聚的弹性能主要向工作面前方巷道释放,冲击危险性更大;冲击矿压防治思路是降低覆岩变化形成的第二应力峰值区。
(4)现场案例表明,工作面沿覆岩由薄向厚推进或沿覆岩由厚向薄推进时,在坚硬覆岩厚度变化区及变化区向较厚区过渡时微震能量、频次较高,冲击矿压危险上升,与理论与模拟分析较为吻合。
致谢: 在此谨对参加重点研发计划(2016YFC0401600)的有关单位及科研人员表示感谢。 -
-
[1] 中华人民共和国水利部. 2019年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2020. Ministry of Water Resources of the People's Republic of China. 2019 Statistic Bulletin on China Water Activities[M]. Beijing: China Water & Power Press, 2020. (in Chinese)
[2] 陈生水. 新形势下中国水库大坝安全管理问题与对策[J]. 中国水利, 2020(22): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG202022016.htm CHEN Shengshui. Issues and countermeasures of safety management of reservoir dams under new situation in China[J]. China Water Resources, 2020(22): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG202022016.htm
[3] 中国工程院全球工程前沿项目组. 全球工程前沿-2020[M]. 北京: 高等教育出版社, 2020. Global Engineering Frontier Project Team of Chinese Academy of Engineering. Global Engineering Frontier- 2020[M]. Beijing: Higher Education Press, 2020. (in Chinese)
[4] XIANG Y, SHENG J B, WANG L, et al. Research progresses on equipment technologies used in safety inspection, repair, and reinforcement for deepwater dams[J]. Science China Technological Sciences, 2022, 65(5): 1059-1071. doi: 10.1007/s11431-021-1958-y
[5] 盛金保, 厉丹丹, 蔡荨, 等. 大坝风险评估与管理关键技术研究进展[J]. 中国科学: 技术科学, 2018, 48(10): 1057-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810005.htm SHENG Jinbao, LI Dandan, CAI Qian, et al. Research progress and its practice of key techniques for dam risk assessment and management[J]. Scientia Sinica (Technologica), 2018, 48(10): 1057-1067. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810005.htm
[6] 张建云, 向衍. 气候变化对水利工程安全影响分析[J]. 中国科学: 技术科学, 2018, 48(10): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810002.htm ZHANG Jianyun, XIANG Yan. Analysis on the impact of climate change on the water conservancy project safety[J]. Scientia Sinica (Technologica), 2018, 48(10): 1031-1039. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810002.htm
[7] 赵二峰. 混凝土坝服役性态安全监控多尺度分析理论及其应用[M]. 北京: 科学出版社, 2019. ZHAO Erfeng. Multi-Scale Analysis Theory and Its Application for Safety Monitoring of Concrete Dams in Service[M]. Beijing: Science Press, 2019. (in Chinese)
[8] 顾冲时, 苏怀智, 刘何稚. 大坝服役风险分析与管理研究述评[J]. 水利学报, 2018, 49(1): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201801005.htm GU Chongshi, SU Huaizhi, LIU Hezhi. Review on service risk analysis of dam engineering[J]. Journal of Hydraulic Engineering, 2018, 49(1): 26-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201801005.htm
[9] HUANG X, ZHENG D, YANG M, et al. Displacement aging component-based stability analysis for the concrete dam[J]. Geomechanics and engineering, 2018, 14(3): 241-246.
[10] 刘智, 赵兰浩, 吴晓彬, 等. 循环荷载下考虑滞回效应的混凝土损伤模型[J]. 工程科学与技术, 2020, 52(4): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202004014.htm LIU Zhi, ZHAO Lanhao, WU Xiaobin, et al. Damage model of concrete considering hysteretic effect under cyclic loading[J]. Advanced Engineering Sciences, 2020, 52(4): 117-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202004014.htm
[11] LIN C N, LI T C, LIU X Q, et al. A deformation separation method for gravity dam body and foundation based on the observed displacements[J]. Structural Control and Health Monitoring, 2019, 26(2): e2304. doi: 10.1002/stc.2304
[12] 李凌霞, 刘晓青. 基于分区有限元与块体界面元混合法的强度折减边坡稳定分析法[J]. 水电能源科学, 2019, 37(1): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901032.htm LI Lingxia, LIU Xiaoqing. Slope stability analysis using strength reduction method based on hybrid interface boundary elements and partitioned finite elements[J]. Water Resources and Power, 2019, 37(1): 123-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901032.htm
[13] 李子阳, 郭丽, 马福恒, 等. 基于统计诊断的大坝监测数据合理性检验[J]. 水利水电科技进展, 2018, 38(5): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201805014.htm LI Ziyang, GUO Li, MA Fuheng, et al. Rationality test of dam monitoring data based on statistical diagnosis[J]. Advances in Science and Technology of Water Resources, 2018, 38(5): 71-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201805014.htm
[14] 鞠向阳, 张戈平, 郭海亮, 等. 监测传感器绝缘情况对人工测读和自动化测读的影响分析[C]// 中国水利学会2019学术年会论文集, 第五分册, 宜昌, 2019: 392-396. JU Xiangyang, ZHANG Geping, GUO Hailiang, et al. Analysis of the impact of monitoring sensor insulation on manual and automated readings[C]// Proceedings of the 2019 Chinese Hydraulic Engineering Society Annual Conference, Volume V, YiChang, 2019: 392-396. (in Chinese)
[15] 王士军, 张国栋, 葛从兵. 水库大坝安全监控与信息化[M]. 南京: 河海大学出版社, 2019. WANG Shijun, ZHANG Guodong, GE Congbing. Reservoir Dam Safety Surveillance and Informationalization[M]. Nanjing: Hohai University Press, 2019. (in Chinese)
[16] 王士军, 谷艳昌, 吴云星, 等. 基于风险的大坝安全监测理念及应用[J]. 中国水利, 2018(20): 20-22, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201820007.htm WANG Shijun, GU Yanchang, WU Yunxing, et al. Risk-based dam safety monitoring: concepts and applications[J]. China Water Resources, 2018(20): 20-22, 53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201820007.htm
[17] 牛广利, 李天旸, 何亮, 等. 大坝安全监测云服务系统的研发与应用[J]. 中国水利, 2018(20): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201820013.htm NIU Guangli, LI Tianyang, HE Liang, et al. Development and application of dam safety monitoring cloud service system[J]. China Water Resources, 2018(20): 42-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201820013.htm
[18] HU C, ZHENG H K, ZHOU W, et al. Numerical simulation of the reinforcement effect of rock bolts in granular mixtures[J]. European Journal of Environmental and Civil Engineering, 2019, 23(7): 807-830. doi: 10.1080/19648189.2017.1311807
[19] 谭界雄, 田金章, 王秘学. 水下机器人技术现状及在水利行业的应用前景[J]. 中国水利, 2018(12): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201812019.htm TAN Jiexiong, TIAN Jinzhang, WANG Mixue. Future application of underwater robots in water sector and its technology status[J]. China Water Resources, 2018(12): 33-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201812019.htm
[20] LIU X D, CHEN R, XUE Z F, et al. Design and optimization of a novel swirling sucker for underwater wall-climbing robots[C]// 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, IEEE, 2018: 1000-1005.
[21] XIANG Y, SHEN G Z, CHENG Z F, et al. Study on sound wave scattering effects of different markers placed on dam face in deepwater reservoir[J]. Advances in Civil Engineering, 2019(3): 1-9.
[22] 王磊, 姜磊, 马利斌, 等. 载人潜水器在高坝水库领域应用的关键技术[J]. 中国水运(下半月), 2019, 19(8): 17-18, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201908010.htm WANG Lei, JIANG Lei, MA Libin, et al. Key technology of manned submersible in gaoba reservoir[J]. China Water Transport, 2019, 19(8): 17-18, 110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201908010.htm
[23] YANG L L, LI Z J, XIONG H Y. Extended state-observer-based sliding mode control for unmatched uncertainty[M]// Control, Mechatronics and Automation Technology. CRC Press, 2015: 65-70.
[24] LIU Z W, JIA J S, ZHENG C Y, et al. Application of Pneumatic Desilting Technology in Zhentou Dam-Ⅰ Hydropower Station[C]// 2020 International Conference on Ecological Resources, Energy, Construction, Transportation and Materials, 2020.
[25] 江超, 盛金保, 朱沁夏, 等. 中国水库深孔泄水建筑物统计与闸门前堆积物现状调研分析[J]. 中国水利, 2018(12): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201812020.htm JIANG Chao, SHENG Jinbao, ZHU Qinxia, et al. Statistics of deep-hole discharge structures in China and investigations on wastes accumulated at gates[J]. China Water Resources, 2018(12): 37-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG201812020.htm
[26] JIANG C, WEI G L, FAN L R, et al. Study on sedimentation characteristics and reduction measures of Bajiazui reservoir[J]. IOP Conference Series: Earth and Environmental Science, 2020, 455(1): 012188.
[27] 孙志恒, 李萌. 单组分聚脲在水工混凝土缺陷修补及防护中的应用[M]. 北京: 中国水利水电出版社, 2020. SUN Zhiheng, LI Meng. Application of One-Component Polyurea in Defect Repair and Protection of Hydraulic Concrete[M]. Beijing: China Water & Power Press, 2020. (in Chinese)
[28] DOU S Q, LI J J, KANG F. Parameter identification of concrete dams using swarm intelligence algorithm[J]. Engineering Computations, 2017, 34(7): 2358-2378.
[29] 王琳琳, 李俊杰, 康飞, 等. 基于无人机图像拼接技术的大坝健康监测方法[J]. 人民长江, 2021, 52(12): 236-240. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202112037.htm WANG Linlin, LI Junjie, KANG Fei, et al. Dam health monitoring method based on image mosaic technology of Unmanned Aearial Vehicle[J]. Yangtze River, 2021, 52(12): 236-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202112037.htm
[30] KANG F, LI J J, ZHAO S Z, et al. Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation[J]. Engineering Structures, 2019, 180: 642-653.
[31] KANG F, LI J J, DAI J H. Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms[J]. Advances in Engineering Software, 2019, 131: 60-76.
[32] 徐建国, 张春宇, 王博, 等. 高密度电法在土质堤坝高聚物防渗墙检测中的应用研究[J]. 水利水电技术, 2018, 49(12): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201812010.htm XU Jianguo, ZHANG Chunyu, WANG Bo, et al. Study on application of high-density electrical method to detection of high polymer cutoff wall inearthfill embankment[J]. Water Resources and Hydropower Engineering, 2018, 49(12): 72-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201812010.htm
[33] 徐建国, 方姝, 王博, 等. 高聚物防渗墙土石坝及其应力场与渗流场耦合分析[J]. 水利与建筑工程学报, 2017, 15(4): 1-5. XU Jianguo, FANG Shu, WANG Bo, et al. Seepage field and stress field coupling analysis of dam with polymer anti-seepage wall[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(4): 1-5. (in Chinese)
[34] 徐建国, 陈志豪, 王壬. 埋地排水管道高聚物注浆修复受力特性分析[J]. 岩土工程学报, 2021, 43(1): 121-129. doi: 10.11779/CJGE202101014 XU Jianguo, CHEN Zhihao, WANG Ren. Mechanical characteristics of buried drainage pipes repaired by polymer grouting technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 121-129. (in Chinese) doi: 10.11779/CJGE202101014
[35] SHEN G Z, SHENG J B, XIANG Y, et al. Numerical modeling of overtopping-induced breach of landslide dams[J]. Natural Hazards Review, 2020, 21(2): 04020002.
[36] 孟颖, 唐玲玲. 考虑致灾后果的溃坝洪水风险评估与等级划分[J]. 长江科学院院报, 2022, 39(10): 61-65, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202210009.htm MENG Ying, TANG Lingling. Risk assessment and rating of dam-break flood in consideration of disaster consequences[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 61-65, 96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202210009.htm
[37] 周志维, 马秀峰. 基于F-ANP法的大坝风险评价与管理技术研究[J]. 中国水利, 2021(4): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG202104023.htm ZHOU Zhiwei, MA Xiufeng. Research on dam risk assessment and management technology based on F-ANP method[J]. China Water Resources, 2021(4): 41-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG202104023.htm
[38] CHEN S H, LI Y J, TIAN Z, et al. On dam-break flow routing in confluent channels[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4384.
[39] TIAN Z, DING C, WANG W, et al. Supercritical flow in bend with variable curvature radius[J]. Journal of Hydraulic Research, 2019, 57(5): 724-732.
[40] FAN Q, TIAN Z, WANG W. Study on risk assessment and early warning of flood-affected areas when a dam break occurs in a mountain river[J]. Water, 2018, 10(10): 1369.
[41] TIAN Z, WANG W, BAI R D, et al. Effect of flaring gate piers on discharge coefficient for finite crest-length weirs[J]. Water, 2018, 10(10): 1349.
[42] 蔡荨, 王昭升, 朱思宇, 等. 土石坝风险实时评估与综合预警模型[J]. 水利水电科技进展, 2018, 38(4): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201804012.htm CAI Qian, WANG Zhaosheng, ZHU Siyu, et al. A real-time risk assessment and synthetical early warning model of earth and rockfill dams[J]. Advances in Science and Technology of Water Resources, 2018, 38(4): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201804012.htm
[43] XIANG Y, FU S Y, ZHU K, et al. Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm[J]. Water Science and Engineering, 2017, 10(1): 70-77.
[44] 胡盛斌, 杜国平, 徐国元, 等. 基于能量测量的声呐渗流矢量法及其应用[J]. 岩土力学, 2020, 41(6): 2143-2154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006039.htm HU Shengbin, DU Guoping, XU Guoyuan, et al. Sonar seepage vector method based on energy measurement and its application[J]. Rock and Soil Mechanics, 2020, 41(6): 2143-2154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006039.htm
[45] 田金章, 查志成, 王秘学, 等. 视声一体化渗漏探测技术在面板坝渗漏检测中的应用[J]. 水电能源科学, 2019, 37(1): 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901023.htm TIAN Jinzhang, ZHA Zhicheng, WANG Mixue, et al. Application of video and sonar integrated leakage detection technology in concrete faced dam leakage detection[J]. Water Resources and Power, 2019, 37(1): 88-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901023.htm
[46] LI P, TANG J H, CHEN X D, et al. Effect of temperature and pH on early hydration rate and apparent activation energy of alkali-activated slag[J]. Advances in Materials Science and Engineering, 2019: 1-13.
[47] 张丰, 白银, 蔡跃波, 等. 低温养护下溴化锂对水泥早期水化的影响[J]. 水利学报, 2019, 50(4): 506-515. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201904011.htm ZHANG Feng, BAI Yin, CAI Yuebo, et al. Effect of lithium bromide on early hydration process of cement at low temperature[J]. Journal of Hydraulic Engineering, 2019, 50(4): 506-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201904011.htm
[48] 范成文, 白银, 李平. 快硬硫铝酸盐水泥基封堵材料早期性能研究[J]. 水利水运工程学报, 2020(2): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202002005.htm FAN Chengwen, BAI Yin, LI Ping. Study on early performance of rapid hardening sulphoaluminate cement-based sealing material[J]. Hydro-Science and Engineering, 2020(2): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202002005.htm
[49] 王钰轲, 黄文清, 万永帅, 等. 不同初始状态软黏土在主应力轴耦合旋转下的孔压及3维变形规律[J]. 工程科学与技术, 2021, 53(2): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202102010.htm WANG Yuke, HUANG Wenqing, WAN Yongshuai, et al. Generation of pore pressure and three-dimensional deformation behavior of soft clay with different initial state under combined principal stress rotation[J]. Advanced Engineering Sciences, 2021, 53(2): 84-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202102010.htm
[50] 张曦君, 王超杰, 田晗, 等. 深水大坝裂缝修复型聚氨酯注浆材料的性能研究[J]. 中国建筑防水, 2021(3): 47-51, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJF202103011.htm ZHANG Xijun, WANG Chaojie, TIAN Han, et al. Performance study on crack repairing polyurethane grouting material for deep-water dam[J]. China Building Waterproofing, 2021(3): 47-51, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJF202103011.htm
[51] 孙志恒, 徐耀. 深水环境大坝缺陷修补材料与工程应用[M]. 北京: 中国三峡出版社, 2019. SUN Zhiheng, XU Yao. Repairing Materials of Dam Defects in Deep Water Environment and Engineering Application[M]. Beijing: China Three Gorges Publishing House, 2019. (in Chinese)
[52] KANG F, LIU J, LI J J, et al. Concrete Dam deformation prediction model for health monitoring based on extreme learning machine[J]. Structural Control and Health Monitoring, 2017, 24(10): e1997.
[53] 周晓明, 田金章, 查志成. 面板堆石坝水下应急加固技术及应用[J]. 人民长江, 2018, 49(增刊1): 189-191. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2018S1049.htm ZHOU Xiaoming, TIAN Jinzhang, ZHA Zhicheng. Underwater emergency reinforcement technology and its application for rock fill dam with face slab[J]. Yangtze River, 2018, 49(S1): 189-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2018S1049.htm
[54] 张盛行, 汤雷, 贾宇, 等. 相变材料水下自吸式堵漏状态试验研究[J]. 水利水运工程学报, 2019(5): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201905007.htm ZHANG Shenghang, TANG Lei, JIA Yu, et al. Experimental study on underwater self-priming plugging state of phase change materials[J]. Hydro-Science and Engineering, 2019(5): 54-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201905007.htm
[55] 张盛行, 汤雷, 贾宇, 等. 复合相变材料性能调配及在应急堵漏中的应用[J]. 建筑材料学报, 2020, 23(6): 1496-1503. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202006032.htm ZHANG Shenghang, TANG Lei, JIA Yu, et al. Properties of composite phase transition material and its application in underwater emergency plugging test[J]. Journal of Building Materials, 2020, 23(6): 1496-1503. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202006032.htm
[56] 郭丽萍, 陈波, 孙伟, 等. 修补用高延性水泥基复合材料性能研究[J]. 建筑结构学报, 2018, 39(7): 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201807020.htm GUO Liping, CHEN Bo, SUN Wei, et al. Properties of high ductility cementitious composites for repair[J]. Journal of Building Structures, 2018, 39(7): 169-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201807020.htm
[57] XU F, WEI H, QIAN W X, et al. Mechanical and thermal behaviour of cemented soil with the addition of ionic soil stabilizer[M]// Springer Series in Geomechanics and Geoengineering. Cham: Springer International Publishing, 2018: 866-869.
[58] 何旸, 钱文勋, 张燕迟, 等. 高速水流下空蚀热效应对水泥水化产物的破坏[J]. 材料导报, 2018, 32(24): 4281-4285. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201824013.htm HE Yang, QIAN Wenxun, ZHANG Yanchi, et al. Thermal effect on the failure of cement hydration products under high velocity flow cavitation[J]. Materials Review, 2018, 32(24): 4281-4285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201824013.htm
-
期刊类型引用(2)
1. 周斌,张弘,林春秀,付冬平. 降雨条件下基坑坡度和平台宽度对稳定性的影响. 广东土木与建筑. 2025(02): 28-31 . 百度学术
2. 樊鸿志,王光进,蓝蓉,刘明生. 露天矿山岩质边坡软弱夹层赋存状态影响边坡稳定性规律研究. 重庆大学学报. 2024(04): 22-33 . 百度学术
其他类型引用(2)