• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
张超, 朱闽湘, 郎志雄, 陈仁朋, 程红战. 基于深度学习的盾构机土舱压力场预测方法[J]. 岩土工程学报, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340
引用本文: 张超, 朱闽湘, 郎志雄, 陈仁朋, 程红战. 基于深度学习的盾构机土舱压力场预测方法[J]. 岩土工程学报, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340
ZHANG Chao, ZHU Minxiang, LANG Zhixiong, CHEN Renpeng, CHENG Hongzhan. Deep learning-based prediction method for chamber pressure field in shield machines[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340
Citation: ZHANG Chao, ZHU Minxiang, LANG Zhixiong, CHEN Renpeng, CHENG Hongzhan. Deep learning-based prediction method for chamber pressure field in shield machines[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 307-315. DOI: 10.11779/CJGE20221340

基于深度学习的盾构机土舱压力场预测方法

Deep learning-based prediction method for chamber pressure field in shield machines

  • 摘要: 土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布特征或地质参数影响。针对该问题,提出了一种基于空间分布物理特征函数导引深度学习的盾构机土舱压力场预测方法。该方法构建物理特征函数用于解耦土舱压力空间分布特征,采用卷积神经网络和门控循环单元分别提取多源参数历史信息的空间特征和特征系数的时序特征,结合多源参数实时信息对特征系数进行预测,从而实现土舱压力场的预测。以长沙地铁四号线某区段为案例,利用该方法准确预测了土舱压力空间分布实测数据,准确率高达0.98,验证了所提方法的有效性。敏感性分析表明,不同地层中土舱压力空间分布特征系数的主要敏感参数基本一致,但其敏感度随地层地质条件的变化规律差异显著,可为复杂地层盾构机土舱压力精细化调控提供参考。

     

    Abstract: The chamber pressure is a key factor in the core issues of the stress state of equipment and the stability of tunnel face during shield tunneling. It exhibits significant spatial variability, and its formation and evolution originate from the complex coupling effects of geotechnics and mechanism, which is related to multiple parameters such as geological features and tunnelling parameters. Yet, the spatial distribution features or geological features are generally ignored in the existing methods for predicting the chamber pressure. To probe this problem, a method to predict the chamber pressure field in shield machines is proposed based on the deep learning algorithm guided by the physical feature function of spatial distribution. This method constructs the physical feature function for decoupling the spatial distribution features of the chamber pressure, uses the convolutional neural network and gated recurrent unit to extract the spatial features of the historical information of multi-source parameters and the temporal features of feature coefficient, respectively, and combines the real-time information of multi-source parameters to predict the feature coefficient, so as to realize the prediction of the chamber pressure field. Taking a section of Changsha Metro Line 4 as a case study, this method is used to accurately predict the measured spatial distribution of the chamber pressure with an accuracy of 0.98, which verifies the effectiveness of the proposed method. The sensitivity analysis reveals that the main sensitive parameters of the spatial distribution feature coefficient of the chamber pressure are basically the same in different strata, but their sensitivities vary significantly with the geological conditions of strata. The results may provide guidance for the refined control of the chamber pressure of shield machines in complex strata.

     

/

返回文章
返回