Generalized Patton shear model for rock-concrete joints
-
摘要: 为合理预测工程中常法向刚度(CNS)条件下岩石–混凝土结构面的剪切强度,在经典Patton模型(理想化为规则三角形粗糙体)的基础上进行改进,将规则三角形粗糙体推广到相似三角形粗糙体节理模型,并给出了相应的岩石–混凝土结构面粗糙度量化方法。与规则三角形粗糙体相比,相似三角形粗糙体由于波长各异而导致各个粗糙体所受的局部应力各不相同,进而引起粗糙体异步破坏的现象。其中,各粗糙体的极限破坏荷载和临界剪切位移根据下限理论求解。在此基础上,建立了相似三角形粗糙体结构面上各粗糙体剪切状态演化方程,并推广了经典Patton模型。该广义Patton模型可同时预测规则和相似三角形结构面剪切强度,并在一定条件下可退化为经典Patton模型。最后,通过12组不同工况下的CNS直剪试验验证了本文模型的合理性。
-
关键词:
- 相似三角形岩石–混凝土结构面 /
- 广义Patton模型 /
- 常法向刚度 /
- 下限理论 /
- 直剪试验 /
- 剪切机制
Abstract: In order to predict the shear strength of the rock-concrete joints subjected to the constant normal stiffness (CNS), the classical Patton model (idealized as regular triangular asperities) is modified, and the regular triangular asperities are extended to similar ones. The quantitative method for the roughness of rock-concrete joints is also given. Compared with the regular ones, the similar triangular asperities carry different local stresses due to different wavelengths, leading to an asynchronous failure. The collapse load and critical shear displacement of every asperity are identified by the lower-bound solution. On this basis, an evolution equation is proposed to quantify the occurrence of local failure, and the classical Patton model is generalized. The generalized Patton model can predict the shear strength of joints of both the regular and the similar triangular asperities, and the current form can be regressed to the classical form under certain conditions. Finally, the proposed model is validated by the observations from 12 groups of CNS direct shear tests. -
0. 引言
随着经济的不断发展和城市人口的增长,中国城市内河的污染问题日益凸显。据统计中国有80%以上的城市内河受到了不同程度污染[1]。河湖底泥的污染物主要分为有机质、氮磷营养盐、重金属三大类。
底泥污染物含量通常受底泥物理-化学性质的影响较大,大部分的有机质与黏土矿物结合在一起,并随细颗粒含量增加而增加,且有机质含量与底泥的比表面积线性相关[2];矿物表面的吸附过程对于有机质的保存起着重要作用,不同黏土矿物对有机质的吸附机理不同[3];底泥液限、塑限和塑性指数与黏粒中有机碳含量、黏粒含量与蒙脱石含量显著相关[4];不同矿物和不同有机质对底泥的物理性状影响显著不同[5]。
底泥中的有机质、营养盐和各种重金属影响底泥的物理性质和工程性质,进而影响底泥的处理技术与效果。因此,分析河湖底泥污染物与底泥物理–化学性质的相关性,对污染底泥的处置以及资源化利用具有重要的工程意义。
已有的研究成果表明了河湖底泥污染物与底泥物理–矿物成分密切相关,但是底泥物理–矿物成分–污染性状关联性的实例研究较少。本研究针对福州市晋安区河道的5处代表性污染底泥,进行了物性指标、矿物成分与污染物含量试验,同时搜集已有的国内外不同底泥污染物含量数据,分析了底泥物理–矿物成分与底泥污染物含量的关联性,并且探讨了底泥中不同污染物含量的相关关系,为河湖底泥的污染治理和处理技术选择提供科学依据。
1. 材料与方法
选取福州晋安区水系5个代表性点位,分别用A,B,C,D,E表示,如图 1所示。该水系有两条干流,分别是凤坂河和浦东河,浦东河有3条支流,分别是福兴河、新厝河、淌洋河,浦东河干流的最下游处为一个公园内的人工湖。B位于凤坂河干流的中段,A位于浦东河干流的上游点,C位于新厝河与浦东河干流的汇集处,D位于淌洋河与浦东河干流的汇集处,E位于浦东河下游的人工湖处。
采集A,B,C,D,E共5处0~10 cm深度的表层底泥,测定有机质(OM)、总氮(TN)、总磷(TP)和重金属(Cu,Zn,Ni,Pb),测定方法见表 1。底泥的颗粒组成、黏土矿物组成和界限含水率见表 2,采用筛分法和密度计法对底泥进行颗粒分析,分别采用Casagrande法和搓条法测定液限wL和塑限wP,采用X射线衍射法测定底泥黏粒中主要矿物成分,包括伊利石(I)、高岭石(K)、绿泥石(C)、蒙脱石(S)的含量。
表 1 本研究底泥污染物测定方法Table 1. Method for determination of pollutants in sediments序号 测试项目 测试方法 试验标准 1 OM 烧失量法 ASTM D2974 2 TN 凯氏法 HJ717—2014 3 TP 钼锑抗分光光度法 HJ 632—2011 4 重金属 ICP-MS法 US EPA 3050B 表 2 本研究底泥颗粒组成、黏土矿物组成及界限含水率Table 2. Particle composition, clay mineral composition and atterberg limits of sediments(%) 底泥 颗粒组成 矿物组成 wL wP Clay Silt Sand I K C S A 42.4 47.5 10.2 19 48 24 9 79.2 35.3 B 12.3 78.8 8.9 22 59 19 0 44.0 31.5 C 12.3 82.9 4.8 33 47 20 0 38.5 23.3 D 26.0 64.0 10.0 27 53 20 0 83.6 35.0 E 28.3 62.4 9.3 24 46 30 0 111.9 44.0 表 3显示了来源于文献的具有不同颗粒级配、界限含水率、黏土矿物组成,以及不同污染物含量的河道底泥数据,结合本文的试验数据,分析底泥物理–矿物成分–污染性状的关联性。
表 3 不同文献收集的底泥数据Table 3. Database of sediment pollutants compiled from literatures序号 颗粒级配 界限
含水率黏土矿物 污染物 主要污染来源 参考文献 OM TN TP Cu Zn Ni Pb 1 √ — — √ √ √ — — — — — 魏岚等[6] 2 √ — — √ √ √ — — — — — Xia等[7] 3 — — — √ √ √ — — — — 生活污水 孙广垠等[8] 4 √ — — — √ √ — — — — 废水、肥料 余成等[9] 5 √ — — — — — √ √ √ √ 废水 El-Sayed等[10] 6 √ — — — — — √ √ √ √ 养殖场 Wang等[11] 7 — — √ √ — — — — — — — Khim[12] 8 — — √ √ — — — — — — — Andrade等[13] 9 — — — √ — — √ √ √ √ 生活污水 Nguyen等 [14] 10 — — — √ — — √ √ √ √ 生活污水 牛红义等[15] 11 — — — — √ √ √ √ √ √ 废水 严玉林[16] 12 — √ — √ — — — — — — — 徐日庆等[17] 13 — √ — √ — — — — — — — Stanchi等 [18] 14 — √ — — — — √ — — — — Phanija等 [19] 15 — √ — — — — — √ — — — 储亚等[20] 16 — √ — — — — — — — √ — Ayodele等 [21] 17 — √ — — — — √ √ — √ — 吕伟豪[22] 2. 底泥试验结果与分析
2.1 污染物与底泥颗粒级配的关系
(1)有机质与底泥颗粒级配的关系
底泥有机质与细颗粒含量的关系绘制于图 2中,可以发现底泥的细颗粒与有机质之间具有较强的相关性,有机质含量随细颗粒含量的增加而增加。底泥有机质含量随细颗粒含量的关系曲线的斜率不同,斜率越大表明底泥中的细颗粒对有机质的吸附作用越强。细颗粒具有较大的比表面积,有利于对有机质的吸附和聚集。底泥中有机质不仅与颗粒级配有关,还有底泥附近的污染源和环境有关。本研究河道底泥位于城市居民区,周围有大量排污管道将居民生活废水排入河道中,使得底泥中含有较高的有机质,文献[6,7]的样品分别取自水库底泥和海湾底泥中,周围没有人为污染源,由于水库的流动性小于海湾,使得水库底泥的有机质含量>海湾底泥的有机质含量。
(2)总氮、总磷与底泥颗粒级配的关系
底泥细颗粒含量与总氮、总磷含量的关系绘制于图 3中,可以发现同一河道底泥的总氮、总磷含量随底泥细颗粒含量的增加而增加,这与有机氮、有机磷易于吸附在细颗粒上有关。底泥周边环境,黏土矿物成分的不同造成了总氮、总磷含量与细颗粒含量的关系曲线的斜率不同。
(3)重金属含量与底泥颗粒级配的关系
底泥细颗粒含量与重金属含量的关系绘制于图 4中。由图 4可见,底泥中重金属的积累受底泥颗粒级配的影响,底泥的Cu,Zn,Ni含量随底泥细颗粒含量的增加而增加,由于粒度影响底泥的比表面积、孔隙体积以及活性组分,使得底泥细颗粒具有强吸附能力,有利于重金属元素的汇集。同时,底泥粒径越细,所含有机质也越多,对重金属的吸附络合作用也越强。本研究的底泥重金属含量较高,与沿河汽车修理厂等工厂废水的长期污染有关,且本研究底泥中的有机质含量较高,使得重金属元素大量累积。
2.2 有机质与黏土矿物的关系
为了研究黏土矿物组成与底泥有机质含量的关系,选取文献[12,13]黏粒含量在40%±1%范围内的底泥,其有机质含量与各黏土矿物组成的关系绘制于图 5中,可以发现,对于相同黏粒含量的底泥,不同黏土矿物对有机质含量有不同的影响,蒙脱石与高岭土对有机质的吸附和储存能力较强,且与有机质含量呈现明显的正相关,伊利石与有机质含量呈弱负相关。虽然伊利石的比表面积大于高岭石,但是本研究对比发现高岭石含量高的底泥中有机质含量较伊利石多,其原因可能是黏土矿物对有机质存在选择性的吸附,不同的黏土矿物保存着不同的有机组分,高岭石易于吸附有机质中的—CH2基团,而在底泥中含量较多有机质是胡敏酸,—CH2是其主要官能团,易与高岭石吸附结合。这一现象有待今后积累更多的试验数据,开展进一步的探讨。
2.3 底泥各污染物之间的关系
(1)底泥有机质与总氮、总磷的关系
底泥有机质含量与总氮、总磷含量的关系绘制于图 6中。由图 6(a)可以发现底泥总氮含量随有机质含量的增加而增加,由图 6(b)可以看出底泥中总磷含量随有机质含量增加的规律不明显,有机质与总磷含量的相关性较有机质与总氮含量的相关性弱。底泥中的氮素有95%以上存在于有机物质中,因此总氮含量与有机质含量呈显著正相关。
(2)底泥有机质与重金属含量的关系
底泥有机质与重金属含量的关系绘制于图 7中。可以发现不同底泥中的重金属含量差异巨大,某些重金属元素的含量甚至相差100倍以上,本研究底泥的重金属含量明显远大于文献[14,15]底泥,这与重金属污染源有关,本研究底泥河道沿线有不锈钢加工厂、汽修厂等众多污染源,造成底泥中重金属污染严重,文献[14,15]底泥的主要污染源为生活污水,因此文献[14,15]底泥的重金属污染程度较本研究底泥轻。底泥重金属含量随有机质含量的增加而增加,不同文献底泥关系曲线的斜率不同,重金属污染源对曲线斜率的大小影响很大。
(3)底泥总氮、总磷含量与重金属含量的关系
底泥总氮、总磷含量与重金属含量的关系绘制于图 8中。可以发现底泥的重金属含量随底泥总氮、总磷含量的增加而增加。有机质与总氮总磷的同源性,以及有机质对重金属的吸附和络合作用,使得底泥重金属含量与底泥总氮总磷含量同样具有正相关的关系。
2.4 污染物与底泥界限含水率的关系
(1)有机质与底泥界限含水率的关系
底泥有机质含量与液限、塑限和塑性指数的关系绘制于图 9中,可以发现底泥中液限、塑限及塑性指数随底泥有机质含量的增加而增加,底泥的有机质含量与液塑限及塑性指数之间具有较强的相关性,液塑限、塑性指数与有机质的关系式列于图中。有机物对液限和塑限的影响是通过改变土颗粒结合水膜的厚度来实现的,有机物具有较高的比表面积和较强的持水能力,可吸附在黏土矿物表面,形成较厚的结合水膜,从而提高底泥的液塑限。
(2)重金属含量与底泥界限含水率的关系
底泥重金属含量与液限、塑限及塑性指数的关系绘制于图 10中。可以发现文献[19~22]底泥的液塑限随着重金属含量的增加而减小。重金属离子对底泥液塑限的影响主要是引起了黏土矿物的聚集和双电层厚度的改变。本研究底泥的液塑限及塑性指数则随着重金属含量的增加而增加,这是因为本研究底泥中有机质含量较高,而文献[19~22]底泥中几乎不含有机质,重金属含量会随着有机质含量的增加而增加,且有机质对液塑限的增加作用大于重金属对液塑限的减小作用。
3. 底泥污染物及物理性质相关性分析
对底泥中的污染物与物理性质数据进行相关性分析,为了减少底泥所处环境因素对相关性分析的影响,对底泥污染物和物理性质按区域进行分析,后取其相关系数平均值。底泥污染物与物理性质的相关系数,如表 4所示。有机质、总氮及Cu,Zn,Ni重金属含量与底泥中黏粒含量和粉粒含量的相关性较高,相关系数均大于0.5以上;污染物与黏土矿物相关性不强,相关系数均小于0.5,这是由于黏土矿物在整个底泥颗粒中所占比重较小,影响力有限;有机质含量与各污染物含量之间的相关系数均较高,表明底泥污染性状与有机质含量密切相关;有机质对底泥液限、塑限、塑性指数的相关系数分别为0.915,0.916,0.797,这表明有机质对底泥的物理性质有着重要的影响,其他污染物与底泥物理性质的相关系数均较低,对底泥物理性质的影响较小。
表 4 底泥污染物及物理性质的相关系数Table 4. Correlation coefficients of sediment pollutants and physical properties污染物与底泥颗粒级配 污染物与黏土矿物 污染物与污染物 污染物与底泥物理性质 Clay OM 0.231 Illite OM -0.099 OM TN 0.809 OM wL 0.915 Silt OM 0.524 Kaolinite OM -0.185 OM TP 0.456 OM wP 0.916 Sand OM -0.485 Chlorite OM -0.194 TN TP 0.623 OM IP 0.797 Clay+Silt OM 0.717 Smectite OM 0.020 OM Cu 0.636 TN wL 0.254 Clay TN 0.686 Illite TN -0.249 OM Zn 0.794 TN wP 0.242 Clay TP 0.439 Illite TP -0.356 OM Ni 0.490 TN IP 0.161 Silt TN -0.026 Kaolinite TN -0.216 OM Pb 0.777 TP wL -0.009 Silt TP -0.097 Kaolinite TP -0.269 TN Cu 0.452 TP wP -0.005 Sand TN -0.763 Chlorite TN 0.485 TN Zn 0.603 TP IP -0.033 Sand TP 0.321 Chlorite TP 0.264 TN Ni 0.511 Cu wL -0.342 Clay+Silt TN 0.763 Smectite TN 0.197 TN Pb 0.433 Cu wP 0.300 Clay+Silt TP 0.321 Smectite TP 0.054 TP Cu 0.335 Cu IP -0.350 Clay Cu 0.355 Illite Cu -0.216 TP Zn 0.577 Zn wL -0.331 Clay Zn 0.363 Illite Zn -0.382 TP Ni 0.203 Zn wP -0.317 Clay Ni 0.335 Illite Ni -0.270 TP Pb 0.501 Zn IP 0.275 Clay Pb 0.335 Illite Pb -0.286 Cu Zn 0.655 Pb wL 0.067 Silt Cu 0.572 Kaolinite Cu -0.229 Cu Ni 0.610 Pb wP -0.365 Silt Zn 0.558 Kaolinite Zn -0.329 Cu Pb 0.551 Pb IP 0.112 Silt Ni 0.639 Kaolinite Ni -0.245 Zn Ni 0.539 Silt Pb 0.006 Kaolinite Pb 0.047 Zn Pb 0.729 Sand Cu -0.555 Chlorite Cu 0.258 Ni Pb 0.406 Sand Zn -0.593 Chlorite Zn 0.482 Sand Ni -0.641 Chlorite Ni 0.445 Sand Pb -0.292 Chlorite Pb 0.362 Clay+Silt Cu 0.554 Smectite Cu -0.137 Clay+Silt Zn 0.591 Smectite Zn -0.214 Clay+Silt Ni 0.635 Smectite Ni -0.159 Clay+Silt Pb 0.295 Smectite Pb 0.103 4. 结论
基于福州晋安东区五处河道底泥系列试验研究结果,结合搜集的独立试验数据,进行了底泥物理-矿物成分–污染性状关联性分析,得出4点结论。
(1)在细颗粒含量较高的底泥中,有利于污染物的吸附积累,随着细颗粒含量的增加,污染物含量近似呈线性增加的趋势。而在砂粒含量较高的底泥中,则缺少这种吸附能力,底泥中污染物含量低。
(2)底泥中不同黏土矿物对有机质含量有不同的影响,蒙脱石与高岭土与有机质含量呈现明显的正相关。
(3)底泥中有机质与氮磷营养盐一般具有同源性,同时有机质对重金属具有络合作用,底泥中有机质含量与总氮总磷含量,有机质含量与重金属含量,总氮总磷含量与重金属含量,均具有良好的线性关系。
(4)底泥中的液限、塑限和塑性指数随着底泥有机质含量的增加而增加,相比于有机质,重金属对底泥界限含水率的影响较小。
-
表 1 岩石–混凝土结构面试验方案
Table 1 Test schemes of rock-concrete structural plane
试验编号 初始法向应力σn0/kPa 法向弹簧刚度
K/(kPa·mm-1)结构面粗糙
类型A1 200 294 λ=10 mm,
β=20°,n=15A2 400 294 A3 200 588 A4 200 588 B1 200 294 λmin=1 mm,
λmax=14 mm,
β=20°,n=20B2 400 294 B3 200 588 B4 200 588 C1 200 294 λmin=1 mm,
λmax=17 mm,
β=20°,n=17C2 400 294 C3 200 588 C4 200 588 表 2 理论模型的峰值强度、残余强度及峰值剪切位移误差
Table 2 Peak strengths, residual strengths and peak shear displacement errors of theoretical model
(%) 编号 峰值误差/% 残余误差/% 峰值剪切位移/% 编号 峰值误差/% 残余误差/% 峰值剪切位移/% A1 8.08 -28.37 -1.82 B3 -2.65 35.60 -8.71 A2 9.95 -24.42 -5.45 B4 2.43 28.73 -9.54 A3 13.84 -12.39 -6.67 C1 2.15 17.60 -17.71 A4 13.88 -15.68 -7.17 C2 3.44 18.38 -17.85 B1 4.29 17.88 -16.00 C3 -0.49 24.49 -16.35 B2 2.35 18.98 -16.75 C4 1.17 28.57 -19.27 -
[1] THIRUKUMARAN S, INDRARATNA B. A review of shear strength models for rock joints subjected to constant normal stiffness[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 405–414. doi: 10.1016/j.jrmge.2015.10.006
[2] 李海波, 刘博, 冯海鹏, 等. 模拟岩石节理试样剪切变形特征和破坏机制研究[J]. 岩土力学, 2008, 29(7): 1741–1746, 1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807006.htm LI Hai-bo, LIU Bo, FENG Hai-peng, et al. Study of deformability behaviour and failure mechanism by simulating rock joints sample under different loading conditions[J]. Rock and Soil Mechanics, 2008, 29(7): 1741–1746, 1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807006.htm
[3] GU X F, SEIDEL J P, HABERFIELD C M. Direct shear test of sandstone-concrete joints[J]. International Journal of Geomechanics, 2003, 3(1): 21–33. doi: 10.1061/(ASCE)1532-3641(2003)3:1(21)
[4] 庄晓莹, 黄润秋, 朱合华. 基于水平集坐标的二维压剪节理动态扩展过程无网格法模拟研究[J]. 岩石力学与工程学报, 2012, 31(11): 2187–2196. doi: 10.3969/j.issn.1000-6915.2012.11.006 ZHUANG Xiao-ying, HUANG Run-qiu, ZHU He-hua. Simulation for 2d compression-shear joint dynamic propagation process using meshless methods based on level sets coordinates[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2187–2196. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.006
[5] JOHNSTON I W, LAM T S K, WILLIAMS A F. Constant normal stiffness direct shear testing for socketed pile design in weak rock[J]. Géotechnique, 1987, 37(1): 83–89. doi: 10.1680/geot.1987.37.1.83
[6] ZHAO H, HOU J C, ZHANG L, et al. Vertical load transfer for bored piles buried in cohesive intermediate geomaterials[J]. International Journal of Geomechanics, 2020, 20(10): 04020172. doi: 10.1061/(ASCE)GM.1943-5622.0001810
[7] 夏才初, 喻强锋, 钱鑫, 等. 常法向刚度条件下岩石节理剪切-渗流特性试验研究[J]. 岩土力学, 2020, 41(1): 57–66, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001008.htm XIA Cai-chu, YU Qiang-feng, QIAN Xin, et al. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness[J]. Rock and Soil Mechanics, 2020, 41(1): 57–66, 77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001008.htm
[8] BARTON N. The shear strength of rock and rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279.
[9] 赵坚. 岩石节理剪切强度的JRC-JMC新模型[J]. 岩石力学与工程学报, 1998, 17(4): 1–9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX804.000.htm ZHAO Jian. A new JRC JMC shear strength criterion for rock joint[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(4): 1–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX804.000.htm
[10] PATTON F D. Multiple modes of shear failure in rock[C]//Procced 1st Cong Int Soc Rock Mech. Lisbon, 1966.
[11] JAEGER J C. Friction of rocks and stability of rock slopes[J]. Géotechnique, 1971, 21(2): 97–134. doi: 10.1680/geot.1971.21.2.97
[12] SAEB S, AMADEI B. Modelling rock joints under shear and normal loading[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 267–278. https://www.sciencedirect.com/science/article/pii/014890629293660C
[13] 赵明华, 夏润炎, 尹平保, 等. 考虑软岩剪胀效应的嵌岩桩荷载传递机理分析[J]. 岩土工程学报, 2014, 36(6): 1005–1011. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15737.shtml ZHAO Ming-hua, XIA Run-yan, YIN Ping-bao, et al. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005–1011. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15737.shtml
[14] BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51: 101–115. https://www.sciencedirect.com/science/article/pii/S0266352X13000293
[15] SEIDEL J P, COLLINGWOOD B. A new socket roughness factor for prediction of rock socket shaft resistance[J]. Canadian Geotechnical Journal, 2001, 38(1): 138–153. https://www.osti.gov/etdeweb/biblio/20155262
[16] HOU J C, ZHAO H, PENG W Z, et al. A limit solution for predicting side resistance on rock-socketed piles[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021131.
[17] SEIDEL J P, HABERFIELD C M. Towards an understanding of joint roughness[J]. Rock Mechanics and Rock Engineering, 1995, 28(2): 69–92. doi: 10.1007/BF01020062
[18] SEIDEL J P, HABERFIELD C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(5): 539–553. https://www.sciencedirect.com/science/article/pii/S1365160902000564
[19] SEOL H, JEONG S, CHO C, et al. Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 848–861. https://www.sciencedirect.com/science/article/pii/S1365160907001578
[20] 赵明华, 雷勇, 刘晓明. 基于桩-岩结构面特性的嵌岩桩荷载传递分析[J]. 岩石力学与工程学报, 2009, 28(1): 103–110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901016.htm ZHAO Ming-hua, LEI Yong, LIU Xiao-ming. Analysis of load transfer of rock-socketed piles based on characteristics of pile-rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 103–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901016.htm
[21] BARTON N, CHOUBEY V. The Shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1–54.
[22] CHEN W. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Scientific Pub. Co, 1975.
[23] ULUSAY R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014[M]. New York: Springer, 2015.
-
期刊类型引用(1)
1. 张闯,王苒,尚晓雨,杨阳,陈龙,董硕,刘泽,杨科. 水域地表基质调查方法探索——以衡水湖为例. 国土资源导刊. 2023(02): 109-113 . 百度学术
其他类型引用(2)