Rationality of frost susceptibility of soils
-
摘要: 冻胀和融沉是影响寒区工程设施安全服役的关键难题,如何合理评价土体的冻害敏感性一直是寒区岩土工程的热点话题。长期以来,以细粒含量为指标的冻胀特性评价体系,较为简单、明确,在指导寒区工程建设中发挥了重要作用。但近年来的研究成果表明:不同国家和地区的冻害敏感性评价体系差别较大,准确性参差不齐;气态水迁移能够引起粗粒土发生冰体聚集和明显冻胀,既有评价体系并未考虑。这对既有冻害敏感性理论提出了严峻挑战,冻害敏感性的概念、指标、评价体系等是否合理,值得深入探讨和梳理。对冻害敏感性存在的问题进行了概述分析,分析了冻害敏感性的分级体系和可靠度,并重点讨论既有冻害敏感性存在的潜在问题。结果表明:①既有冻害敏感性评价方法可靠度普遍偏低,可靠度在50%~80%之间;②既有冻害敏感性评价标准并不适用于气态水迁移诱发的土体冻胀,仅根据细粒含量来判定土体冻害敏感性是不充分的,应综合考虑冻结环境因素。③既有冻害敏感性评价指标可以用于评判土体的融沉特性。分析了既有冻害敏感性的不足并给出了相关的试验证明,成果有助于补充完善土的冻害敏感性分类标准,对寒区冻害防控有重要意义。Abstract: The frost heave and thaw weakening are the critical issues for the infrastructures in cold regions. How to reasonably assess the frost susceptibility of soils has been a hotspot in cold-region geotechnics. The frost susceptibility has been studied for about one hundred years since Casagrande (1931) proposed fine content as a main index to evaluate the frost susceptibility of soils. In most cases, the frost characteristics defined by fines content are clear and very simple, and work well in guiding the engineering construction in cold regions. However, the recent studies show that: (1) The frost heave occurs frequently in the subgrade which is designed and constructed absolutely according to the existing frost susceptibility criteria. (2) The current frost susceptibility criteria vary greatly in different countries and regions with different accuracies. (3) The vapour flow can lead to considerable frost heave in coarse-grained soils, which is not considered in the existing frost susceptibility. The above issues challenge the existing frost susceptibility. It is worth to analyze whether the concept of frost susceptibility is reasonable or not as well as its evaluation system. This study tries to analyze the advantages and disadvantages of the existing frost susceptibility criteria. The main findings are: (1) The reliability of the existing frost susceptibility is generally low, within the range of 50% to 80%. (2) The existing frost susceptibility criteria are not suitable to the case that the frost heave in coarse-grained soils is caused by vapour transfer. The freezing environmental factors should be considered in defining the frost susceptibility. (3) The existing frost susceptibility may be suitable to indicate the thaw weakening property of soils. The outcome of this study is helpful to replenishing the classification of frost susceptibility criteria. It would be of great significance to frost disaster prevention in cold regions.
-
Keywords:
- frost susceptibility /
- fines content /
- reliability /
- vapour transfer /
- environmental factor
-
0. 引言
随着经济的不断发展和城市人口的增长,中国城市内河的污染问题日益凸显。据统计中国有80%以上的城市内河受到了不同程度污染[1]。河湖底泥的污染物主要分为有机质、氮磷营养盐、重金属三大类。
底泥污染物含量通常受底泥物理-化学性质的影响较大,大部分的有机质与黏土矿物结合在一起,并随细颗粒含量增加而增加,且有机质含量与底泥的比表面积线性相关[2];矿物表面的吸附过程对于有机质的保存起着重要作用,不同黏土矿物对有机质的吸附机理不同[3];底泥液限、塑限和塑性指数与黏粒中有机碳含量、黏粒含量与蒙脱石含量显著相关[4];不同矿物和不同有机质对底泥的物理性状影响显著不同[5]。
底泥中的有机质、营养盐和各种重金属影响底泥的物理性质和工程性质,进而影响底泥的处理技术与效果。因此,分析河湖底泥污染物与底泥物理–化学性质的相关性,对污染底泥的处置以及资源化利用具有重要的工程意义。
已有的研究成果表明了河湖底泥污染物与底泥物理–矿物成分密切相关,但是底泥物理–矿物成分–污染性状关联性的实例研究较少。本研究针对福州市晋安区河道的5处代表性污染底泥,进行了物性指标、矿物成分与污染物含量试验,同时搜集已有的国内外不同底泥污染物含量数据,分析了底泥物理–矿物成分与底泥污染物含量的关联性,并且探讨了底泥中不同污染物含量的相关关系,为河湖底泥的污染治理和处理技术选择提供科学依据。
1. 材料与方法
选取福州晋安区水系5个代表性点位,分别用A,B,C,D,E表示,如图 1所示。该水系有两条干流,分别是凤坂河和浦东河,浦东河有3条支流,分别是福兴河、新厝河、淌洋河,浦东河干流的最下游处为一个公园内的人工湖。B位于凤坂河干流的中段,A位于浦东河干流的上游点,C位于新厝河与浦东河干流的汇集处,D位于淌洋河与浦东河干流的汇集处,E位于浦东河下游的人工湖处。
采集A,B,C,D,E共5处0~10 cm深度的表层底泥,测定有机质(OM)、总氮(TN)、总磷(TP)和重金属(Cu,Zn,Ni,Pb),测定方法见表 1。底泥的颗粒组成、黏土矿物组成和界限含水率见表 2,采用筛分法和密度计法对底泥进行颗粒分析,分别采用Casagrande法和搓条法测定液限wL和塑限wP,采用X射线衍射法测定底泥黏粒中主要矿物成分,包括伊利石(I)、高岭石(K)、绿泥石(C)、蒙脱石(S)的含量。
表 1 本研究底泥污染物测定方法Table 1. Method for determination of pollutants in sediments序号 测试项目 测试方法 试验标准 1 OM 烧失量法 ASTM D2974 2 TN 凯氏法 HJ717—2014 3 TP 钼锑抗分光光度法 HJ 632—2011 4 重金属 ICP-MS法 US EPA 3050B 表 2 本研究底泥颗粒组成、黏土矿物组成及界限含水率Table 2. Particle composition, clay mineral composition and atterberg limits of sediments(%) 底泥 颗粒组成 矿物组成 wL wP Clay Silt Sand I K C S A 42.4 47.5 10.2 19 48 24 9 79.2 35.3 B 12.3 78.8 8.9 22 59 19 0 44.0 31.5 C 12.3 82.9 4.8 33 47 20 0 38.5 23.3 D 26.0 64.0 10.0 27 53 20 0 83.6 35.0 E 28.3 62.4 9.3 24 46 30 0 111.9 44.0 表 3显示了来源于文献的具有不同颗粒级配、界限含水率、黏土矿物组成,以及不同污染物含量的河道底泥数据,结合本文的试验数据,分析底泥物理–矿物成分–污染性状的关联性。
表 3 不同文献收集的底泥数据Table 3. Database of sediment pollutants compiled from literatures序号 颗粒级配 界限
含水率黏土矿物 污染物 主要污染来源 参考文献 OM TN TP Cu Zn Ni Pb 1 √ — — √ √ √ — — — — — 魏岚等[6] 2 √ — — √ √ √ — — — — — Xia等[7] 3 — — — √ √ √ — — — — 生活污水 孙广垠等[8] 4 √ — — — √ √ — — — — 废水、肥料 余成等[9] 5 √ — — — — — √ √ √ √ 废水 El-Sayed等[10] 6 √ — — — — — √ √ √ √ 养殖场 Wang等[11] 7 — — √ √ — — — — — — — Khim[12] 8 — — √ √ — — — — — — — Andrade等[13] 9 — — — √ — — √ √ √ √ 生活污水 Nguyen等 [14] 10 — — — √ — — √ √ √ √ 生活污水 牛红义等[15] 11 — — — — √ √ √ √ √ √ 废水 严玉林[16] 12 — √ — √ — — — — — — — 徐日庆等[17] 13 — √ — √ — — — — — — — Stanchi等 [18] 14 — √ — — — — √ — — — — Phanija等 [19] 15 — √ — — — — — √ — — — 储亚等[20] 16 — √ — — — — — — — √ — Ayodele等 [21] 17 — √ — — — — √ √ — √ — 吕伟豪[22] 2. 底泥试验结果与分析
2.1 污染物与底泥颗粒级配的关系
(1)有机质与底泥颗粒级配的关系
底泥有机质与细颗粒含量的关系绘制于图 2中,可以发现底泥的细颗粒与有机质之间具有较强的相关性,有机质含量随细颗粒含量的增加而增加。底泥有机质含量随细颗粒含量的关系曲线的斜率不同,斜率越大表明底泥中的细颗粒对有机质的吸附作用越强。细颗粒具有较大的比表面积,有利于对有机质的吸附和聚集。底泥中有机质不仅与颗粒级配有关,还有底泥附近的污染源和环境有关。本研究河道底泥位于城市居民区,周围有大量排污管道将居民生活废水排入河道中,使得底泥中含有较高的有机质,文献[6,7]的样品分别取自水库底泥和海湾底泥中,周围没有人为污染源,由于水库的流动性小于海湾,使得水库底泥的有机质含量>海湾底泥的有机质含量。
(2)总氮、总磷与底泥颗粒级配的关系
底泥细颗粒含量与总氮、总磷含量的关系绘制于图 3中,可以发现同一河道底泥的总氮、总磷含量随底泥细颗粒含量的增加而增加,这与有机氮、有机磷易于吸附在细颗粒上有关。底泥周边环境,黏土矿物成分的不同造成了总氮、总磷含量与细颗粒含量的关系曲线的斜率不同。
(3)重金属含量与底泥颗粒级配的关系
底泥细颗粒含量与重金属含量的关系绘制于图 4中。由图 4可见,底泥中重金属的积累受底泥颗粒级配的影响,底泥的Cu,Zn,Ni含量随底泥细颗粒含量的增加而增加,由于粒度影响底泥的比表面积、孔隙体积以及活性组分,使得底泥细颗粒具有强吸附能力,有利于重金属元素的汇集。同时,底泥粒径越细,所含有机质也越多,对重金属的吸附络合作用也越强。本研究的底泥重金属含量较高,与沿河汽车修理厂等工厂废水的长期污染有关,且本研究底泥中的有机质含量较高,使得重金属元素大量累积。
2.2 有机质与黏土矿物的关系
为了研究黏土矿物组成与底泥有机质含量的关系,选取文献[12,13]黏粒含量在40%±1%范围内的底泥,其有机质含量与各黏土矿物组成的关系绘制于图 5中,可以发现,对于相同黏粒含量的底泥,不同黏土矿物对有机质含量有不同的影响,蒙脱石与高岭土对有机质的吸附和储存能力较强,且与有机质含量呈现明显的正相关,伊利石与有机质含量呈弱负相关。虽然伊利石的比表面积大于高岭石,但是本研究对比发现高岭石含量高的底泥中有机质含量较伊利石多,其原因可能是黏土矿物对有机质存在选择性的吸附,不同的黏土矿物保存着不同的有机组分,高岭石易于吸附有机质中的—CH2基团,而在底泥中含量较多有机质是胡敏酸,—CH2是其主要官能团,易与高岭石吸附结合。这一现象有待今后积累更多的试验数据,开展进一步的探讨。
2.3 底泥各污染物之间的关系
(1)底泥有机质与总氮、总磷的关系
底泥有机质含量与总氮、总磷含量的关系绘制于图 6中。由图 6(a)可以发现底泥总氮含量随有机质含量的增加而增加,由图 6(b)可以看出底泥中总磷含量随有机质含量增加的规律不明显,有机质与总磷含量的相关性较有机质与总氮含量的相关性弱。底泥中的氮素有95%以上存在于有机物质中,因此总氮含量与有机质含量呈显著正相关。
(2)底泥有机质与重金属含量的关系
底泥有机质与重金属含量的关系绘制于图 7中。可以发现不同底泥中的重金属含量差异巨大,某些重金属元素的含量甚至相差100倍以上,本研究底泥的重金属含量明显远大于文献[14,15]底泥,这与重金属污染源有关,本研究底泥河道沿线有不锈钢加工厂、汽修厂等众多污染源,造成底泥中重金属污染严重,文献[14,15]底泥的主要污染源为生活污水,因此文献[14,15]底泥的重金属污染程度较本研究底泥轻。底泥重金属含量随有机质含量的增加而增加,不同文献底泥关系曲线的斜率不同,重金属污染源对曲线斜率的大小影响很大。
(3)底泥总氮、总磷含量与重金属含量的关系
底泥总氮、总磷含量与重金属含量的关系绘制于图 8中。可以发现底泥的重金属含量随底泥总氮、总磷含量的增加而增加。有机质与总氮总磷的同源性,以及有机质对重金属的吸附和络合作用,使得底泥重金属含量与底泥总氮总磷含量同样具有正相关的关系。
2.4 污染物与底泥界限含水率的关系
(1)有机质与底泥界限含水率的关系
底泥有机质含量与液限、塑限和塑性指数的关系绘制于图 9中,可以发现底泥中液限、塑限及塑性指数随底泥有机质含量的增加而增加,底泥的有机质含量与液塑限及塑性指数之间具有较强的相关性,液塑限、塑性指数与有机质的关系式列于图中。有机物对液限和塑限的影响是通过改变土颗粒结合水膜的厚度来实现的,有机物具有较高的比表面积和较强的持水能力,可吸附在黏土矿物表面,形成较厚的结合水膜,从而提高底泥的液塑限。
(2)重金属含量与底泥界限含水率的关系
底泥重金属含量与液限、塑限及塑性指数的关系绘制于图 10中。可以发现文献[19~22]底泥的液塑限随着重金属含量的增加而减小。重金属离子对底泥液塑限的影响主要是引起了黏土矿物的聚集和双电层厚度的改变。本研究底泥的液塑限及塑性指数则随着重金属含量的增加而增加,这是因为本研究底泥中有机质含量较高,而文献[19~22]底泥中几乎不含有机质,重金属含量会随着有机质含量的增加而增加,且有机质对液塑限的增加作用大于重金属对液塑限的减小作用。
3. 底泥污染物及物理性质相关性分析
对底泥中的污染物与物理性质数据进行相关性分析,为了减少底泥所处环境因素对相关性分析的影响,对底泥污染物和物理性质按区域进行分析,后取其相关系数平均值。底泥污染物与物理性质的相关系数,如表 4所示。有机质、总氮及Cu,Zn,Ni重金属含量与底泥中黏粒含量和粉粒含量的相关性较高,相关系数均大于0.5以上;污染物与黏土矿物相关性不强,相关系数均小于0.5,这是由于黏土矿物在整个底泥颗粒中所占比重较小,影响力有限;有机质含量与各污染物含量之间的相关系数均较高,表明底泥污染性状与有机质含量密切相关;有机质对底泥液限、塑限、塑性指数的相关系数分别为0.915,0.916,0.797,这表明有机质对底泥的物理性质有着重要的影响,其他污染物与底泥物理性质的相关系数均较低,对底泥物理性质的影响较小。
表 4 底泥污染物及物理性质的相关系数Table 4. Correlation coefficients of sediment pollutants and physical properties污染物与底泥颗粒级配 污染物与黏土矿物 污染物与污染物 污染物与底泥物理性质 Clay OM 0.231 Illite OM -0.099 OM TN 0.809 OM wL 0.915 Silt OM 0.524 Kaolinite OM -0.185 OM TP 0.456 OM wP 0.916 Sand OM -0.485 Chlorite OM -0.194 TN TP 0.623 OM IP 0.797 Clay+Silt OM 0.717 Smectite OM 0.020 OM Cu 0.636 TN wL 0.254 Clay TN 0.686 Illite TN -0.249 OM Zn 0.794 TN wP 0.242 Clay TP 0.439 Illite TP -0.356 OM Ni 0.490 TN IP 0.161 Silt TN -0.026 Kaolinite TN -0.216 OM Pb 0.777 TP wL -0.009 Silt TP -0.097 Kaolinite TP -0.269 TN Cu 0.452 TP wP -0.005 Sand TN -0.763 Chlorite TN 0.485 TN Zn 0.603 TP IP -0.033 Sand TP 0.321 Chlorite TP 0.264 TN Ni 0.511 Cu wL -0.342 Clay+Silt TN 0.763 Smectite TN 0.197 TN Pb 0.433 Cu wP 0.300 Clay+Silt TP 0.321 Smectite TP 0.054 TP Cu 0.335 Cu IP -0.350 Clay Cu 0.355 Illite Cu -0.216 TP Zn 0.577 Zn wL -0.331 Clay Zn 0.363 Illite Zn -0.382 TP Ni 0.203 Zn wP -0.317 Clay Ni 0.335 Illite Ni -0.270 TP Pb 0.501 Zn IP 0.275 Clay Pb 0.335 Illite Pb -0.286 Cu Zn 0.655 Pb wL 0.067 Silt Cu 0.572 Kaolinite Cu -0.229 Cu Ni 0.610 Pb wP -0.365 Silt Zn 0.558 Kaolinite Zn -0.329 Cu Pb 0.551 Pb IP 0.112 Silt Ni 0.639 Kaolinite Ni -0.245 Zn Ni 0.539 Silt Pb 0.006 Kaolinite Pb 0.047 Zn Pb 0.729 Sand Cu -0.555 Chlorite Cu 0.258 Ni Pb 0.406 Sand Zn -0.593 Chlorite Zn 0.482 Sand Ni -0.641 Chlorite Ni 0.445 Sand Pb -0.292 Chlorite Pb 0.362 Clay+Silt Cu 0.554 Smectite Cu -0.137 Clay+Silt Zn 0.591 Smectite Zn -0.214 Clay+Silt Ni 0.635 Smectite Ni -0.159 Clay+Silt Pb 0.295 Smectite Pb 0.103 4. 结论
基于福州晋安东区五处河道底泥系列试验研究结果,结合搜集的独立试验数据,进行了底泥物理-矿物成分–污染性状关联性分析,得出4点结论。
(1)在细颗粒含量较高的底泥中,有利于污染物的吸附积累,随着细颗粒含量的增加,污染物含量近似呈线性增加的趋势。而在砂粒含量较高的底泥中,则缺少这种吸附能力,底泥中污染物含量低。
(2)底泥中不同黏土矿物对有机质含量有不同的影响,蒙脱石与高岭土与有机质含量呈现明显的正相关。
(3)底泥中有机质与氮磷营养盐一般具有同源性,同时有机质对重金属具有络合作用,底泥中有机质含量与总氮总磷含量,有机质含量与重金属含量,总氮总磷含量与重金属含量,均具有良好的线性关系。
(4)底泥中的液限、塑限和塑性指数随着底泥有机质含量的增加而增加,相比于有机质,重金属对底泥界限含水率的影响较小。
-
表 1 冻害敏感性四级分类
Table 1 Four levels of classification of frost susceptibility
原冻害等级 标准来源 原冻害等级(对应新冻害等级) 新冻害等级 1-2 奥地利,丹麦,芬兰,
波兰,Beskow, Brandl冻害不敏感(1)
冻害敏感(3)1-3 1-2-3 加拿大安大略 低冻害(2), 中等冻害(3), 强冻害(4) 2-3-4 德国 不冻害(1), 中等冻害(3), 强冻害(4) 1-3-4 罗马尼亚 不冻害(1), 低—高冻害(3), 非常强冻害(4) 1-3-4 Schaible 不—低冻害(2), 中—强冻害(3), 非常强冻害(4) 2-3-4 1-2-3-4 挪威,瑞士,
Jessberger, Konrad不冻害(1), 低冻害(2),
中等冻害(3), 强冻害(4)1-2-3-4 1-2-3-4-5 中国 不冻害(1), 低冻害(2), 中等冻害(2),
强冻害(3), 非常强冻害(4)1-2-3-4 加拿大曼尼托巴 不冻害(1), 低冻害(2), 中等冻害(2),
强冻害(3), 非常强冻害(4)1-2-3-4 1-2-3-4-5-6 美国, Casagrande 不冻害(1), 极低冻害(2), 低冻害(2),
中等冻害(3), 强冻害(3), 非常强冻害(4)1-2-3-4 表 2 补水冻胀试验方案设计
Table 2 Design of water-supply frost heave test schemes
土样 编号 含水率/% 干密度/(g·cm-3) 顶部温度/℃ 底部温度/℃ 粉土 1 16.0 1.80 -7.5 12.1 黏土 2 20.0 1.60 -7.9 12.6 A料 3 3.0 1.60 -7.6 12.2 A料 4 7.0 1.60 -7.7 12.2 细砾 5 3.0 1.60 -8.1 12.9 表 3 冻融试验条件
Table 3 Test conditions of freeze-thaw
土样 编号 含水率/% 顶部温度/℃ 底部温度/℃ 渗透系数/(cm·s-1) 粉土 6 16.0 -10.5 10.2 8.1×10-5 A料 7 3.0 -10.9 10.3 6.1×10-2 表 4 气态水补给冻胀试验条件
Table 4 Test conditions of vapour-supply frost heave
材料 编号 含水率/% 干密度/(g·cm-3) 底部温度/℃ 顶部温度/℃ 平均湿度/% 粉土 8 10.0 1.60 -11.2 5.2 80.5 黏土 9 10.0 1.60 -11.4 7.2 75.9 A料 10 3.0 1.60 -11.6 5.1 78.8 细砾 11 3.0 1.60 -11.0 8.8 80.2 表 5 材料物理参数
Table 5 Physical properties of materials
材料 粒径/mm 液限/% 塑限/% 最优含水率/% 最大干密度/(g·cm-3) 粉土 <2 34.6 16.6 15.8 1.88 黏土 <2 42.0 25.4 21.3 1.71 A料 0.075~10 — — — 1.68 细砾 2~5 — — — 1.67 -
[1] 程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213–217. doi: 10.3969/j.issn.1000-0240.2001.03.001 CHENG Guo-dong, HE Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213–217. (in Chinese) doi: 10.3969/j.issn.1000-0240.2001.03.001
[2] MA W, CHENG G D, WU Q B. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad[J]. Cold Regions Science and Technology, 2009, 59(1): 3–11. doi: 10.1016/j.coldregions.2009.07.007
[3] LAI Y M. Cooling effect of ripped-stone embankments of Qing-Tibet railway under climatic warming[J]. Chinese Science Bulletin, 2003, 48(6): 598–604. doi: 10.1360/03tb9127
[4] 马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625–639. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204009.htm MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625–639. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204009.htm
[5] 卢春房. 路基工程[M]. 北京: 中国铁道出版社, 2015: 191–274. LU Chun-fang. Subgrade Engineering[M]. Beijing: China Railway Publishing House, 2015: 191–274. (in Chinese)
[6] NIU F J, ZHENG H, LI A Y. The study of frost heave mechanism of high-speed railway foundation by field-monitored data and indoor verification experiment[J]. Acta Geotechnica, 2020, 15(3): 581–593. doi: 10.1007/s11440-018-0740-8
[7] 盛岱超, 张升, 贺佐跃. 土体冻胀敏感性评价[J]. 岩石力学与工程学报, 2014, 33(3): 594–605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403020.htm SHENG Dai-chao, ZHANG Sheng, HE Zuo-yue. Assessing frost susceptibility of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 594–605. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403020.htm
[8] LIN Z J, NIU F J, LI X L, et al. Characteristics and controlling factors of frost heave in high-speed railway subgrade, Northwest China[J]. Cold Regions Science and Technology, 2018, 153: 33–44. doi: 10.1016/j.coldregions.2018.05.001
[9] 蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验[J]. 中国铁道科学, 2016, 37(3): 16–21. doi: 10.3969/j.issn.1001-4632.2016.03.003 CAI De-gou. Test on frost heaving spatial-temporal distribution of high speed railway subgrade in seasonal frozen soil region[J]. China Railway Science, 2016, 37(3): 16–21. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.003
[10] TENG J D, YAN H, LIANG S H, et al. Generalising the Kozeny-Carman equation to frozen soils[J]. Journal of Hydrology, 2021, 594: 125885. doi: 10.1016/j.jhydrol.2020.125885
[11] TENG J D, SHAN F, HE Z Y, et al. Experimental study of ice accumulation in unsaturated clean sand[J]. Géotechnique, 2019, 69(3): 251–259. doi: 10.1680/jgeot.17.P.208
[12] TENG J D, LIU J L, ZHANG S, et al. Modelling frost heave in unsaturated coarse-grained soils[J]. Acta Geotechnica, 2020, 15(11): 3307–3320. doi: 10.1007/s11440-020-00956-2
[13] ZHANG S, TENG J D, HE Z Y, et al. Canopy effect caused by vapour transfer in covered freezing soils[J]. Géotechnique, 2016, 66(11): 927–940. doi: 10.1680/jgeot.16.P.016
[14] ZHANG S, TENG J D, HE Z Y, et al. Importance of vapor flow in unsaturated freezing soil: a numerical study[J]. Cold Regions Science and Technology, 2016, 126: 1–9. doi: 10.1016/j.coldregions.2016.02.011
[15] 刘建龙, 滕继东, 张升, 等. 气态水迁移诱发非饱和粗粒土冻胀的试验研究[J]. 岩土工程学报, 2021, 43(7): 1297–1305, 1379. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107019.htm LIU Jian-long, TENG Ji-dong, ZHANG Sheng, et al. Experimental study on frost heave in unsaturated coarse-grained soil caused by vapour transfer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1297–1305, 1379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107019.htm
[16] CASAGRANDE A. Discussion of frost heaving[C]// Proceedings, Highway Research Board, 1931: 168–172.
[17] CHAMBERLAIN E J. Frost Susceptibility of Soil, Review of Index Tests[M]. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory, 1981.
[18] WILLIS E A. Discussion on the relation of frost phenomena to the subgrade by Burton and Benkelman[C]// Proceedings, Highway Research Board, 1930: 275.
[19] MAAG G. Ein physikalisches frostkriterium[J]. Strasse und Verkehr, 1966, 52(8): 431–434. (MAAG G. A physical frost criterion[J]. Road and Traffic, 1966, 52(8): 431–434. (in German))
[20] WILLIAMS P J. Pore pressures at a penetrating frost line and their prediction[J]. Géotechnique, 1966, 16(3): 187–208. doi: 10.1680/geot.1966.16.3.187
[21] JONES R H, HURT K G. An osmotic method for determining rock and aggregate suction characteristics with applications to frost heave studies[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1978, 11(3): 245–252. doi: 10.1144/GSL.QJEG.1978.011.03.04
[22] HOEKSTRA P, CHAMBERLAIN E J. Frost Heaving Pressures[R]. CRREL Internal Report, 1965.
[23] RIDDLE J A. Susceptibility to Frost Heaving of Soils at Selected Sites along the Liard River Valley, Determined by Pore Pressure Measurements[R]. Task Force on Northern Oil Development, Environmental-Social Committee Report 73-3, 1973: 465–511.
[24] KONRAD J M. Frost susceptibility related to soil index properties[J]. Canadian Geotechnical Journal, 1999, 36(3): 403–417. doi: 10.1139/t99-008
[25] JIN H W, LEE J, RYU B H, et al. Simple frost heave testing method using a temperature-controllable cell[J]. Cold Regions Science and Technology, 2019, 157: 119–132. doi: 10.1016/j.coldregions.2018.09.011
[26] 铁路工程土工试验规程: TB 10102—2010[S]. 2011. Code for Soil Test of Railway Engineering: TB 10102—2010[S]. 2011. (in Chinese)
[27] VASILYEV Y M. Factors affecting the heaving of subgrade soils at freezing[J]. Frost in Soil, 1973, 12: 17–18.
[28] 吴紫汪. 冻土工程分类[J]. 冰川冻土, 1982, 4(4): 43–48. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198204002.htm WU Zi-wang. Classification of frozen soils in engineering constructions[J]. Journal of Glaciology and Geocryology, 1982, 4(4): 43–48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198204002.htm
[29] 陈肖柏, 王雅卿, 何平. 砂砾料之冻胀敏感性[J]. 岩土工程学报, 1988, 10(3): 23–29. doi: 10.3321/j.issn:1000-4548.1988.03.003 CHEN Xiao-bai, WANG Ya-qing, HE Ping. Frost susceptibility of sandy gravel during freezing[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(3): 23–29. (in Chinese) doi: 10.3321/j.issn:1000-4548.1988.03.003
[30] 陈肖柏, 王雅卿, 何平. 砂砾土中的成冰作用及其冻胀敏感性[J]. 科学通报, 1987, 23: 1812–1815. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198723015.htm CHEN Xiao-bai, WANG Ya-qing, HE Ping. Ice formation and frost susceptibility of sandy gravel soil[J]. Chinese Science Bulletin, 1987, 23: 1812–1815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198723015.htm
[31] 张以晨, 李欣, 张喜发, 等. 季冻区公路路基粗粒土的冻胀敏感性及分类研究[J]. 岩土工程学报, 2007, 29(10): 1522–1526. doi: 10.3321/j.issn:1000-4548.2007.10.015 ZHANG Yi-chen, LI Xin, ZHANG Xi-fa, et al. Research on frost heave susceptibility and classification of coarse grained soil of highway subgrade in seasonally frozen ground region[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1522–1526. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.10.015
[32] 叶阳升, 王仲锦, 程爱君, 等. 路基的填料冻胀分类及防冻层设置[J]. 中国铁道科学, 2007, 28(1): 1–7. doi: 10.3321/j.issn:1001-4632.2007.01.001 YE Yang-sheng, WANG Zhong-jing, CHENG Ai-jun, et al. Frost heave classification of railway subgrade filling material and the design of anti-freezing layer[J]. China Railway Science, 2007, 28(1): 1–7. (in Chinese) doi: 10.3321/j.issn:1001-4632.2007.01.001
[33] ASTM D 5918-13 2013. Standard Test Methods for Frost Heave and Thaw Weakening Susceptibility of Soils[S]. 2013.
[34] CARTER M, BENTLEY S P. Frost Susceptibility in Soil Properties and Their Correlations[M]. UK: John Wiley and Sons, Ltd, 2016.
[35] АЛЕКСЕЕВА Е К. Лабораторная методика определения пучения грунтов при промерзании[C]// Конференция по инженерно-геологическим свойствам горных пород и методам их исследования. Москва: АН СССР, 1957: 304–306. (ALEKSEEVA E K. Laboratory technique for determining ground heaving during frost penetration[C]// Conference on Engineering and Geological Properties of Rocks and the Methods of Their Investigation. Moscow: AN SSSR, 1957: 304–306. (in Russian))
[36] 罗曼ЛT. 冻土力学[M]. 张长庆, 张泽, 译. 北京: 科学出版社, 2016. ROMAN L T. Frozen Soil Mechanics [M]. ZHANG Chang-qing, ZHANG Zhe, trans. Beijing: Science Press, 2016. (in Chinese)
[37] ZHELEZNIAK M, WU Q B, KIRILLIN A, et al. Permafrost distribution and temperature in the Elkon Horst, Russia [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 107–122.
[38] KUKKONEN I T, SUHONEN E, EZHOVA E, et al. Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north-west Siberia[J]. Permafrost and Periglacial Processes, 2020, 31(2): 264–280. doi: 10.1002/ppp.2040
[39] VASILIEV A A, DROZDOV D S, GRAVIS A G, et al. Permafrost degradation in the western Russian arctic[J]. Environmental Research Letters, 2020, 15(4): 045001. doi: 10.1088/1748-9326/ab6f12
[40] КРОНИК Л А. Морозостойкость грунтов, используемых при строительстве гидротехнических сооружений на Крайнем Севере[R]. Москва: Инженерно-строительный институт. Сборник трудов, 1973, 115: 159–167. (KRONIK L A. Frost Susceptibility of Soils Used for Building Hydraulic Structures in the Far North[R]. Moscow: Civil Engineering Institute. Collection of Works, 1973, 115: 159–167. (in Russian))
[41] 陈肖柏, 刘建坤, 刘鸿绪, 等. 土的冻结作用与地基[M]. 北京: 科学出版社, 2006: 149–154. CHEN Xiao-bai, LIU Jian-kun, LIU Hong-xu, et al. Frost Action of Soil and Foundation Engineering[M]. Beijing: Science Press, 2006: 149–154. (in Chinese)
[42] KONRAD J M. Frost Heave Mechanics[D]. Edmonton: The University of Alberta, 1980.
[43] ISSMFE (International Society of Soil Mechanics and Foundation Engineering) Technical Committee on Frost, TC-8. Frost in Geotechnical Engineering[R]. Saariselkä, Finland, Espoo, VTT Symposium, 1989, 11: 1570.
[44] ĆWIĄKAŁA M, GAJEWSKA B, KRASZEWSKI C, et al. Laboratory investigations of frost susceptibility of aggregates applied to road base courses[J]. Transportation Research Procedia, 2016, 14: 3476–3484. doi: 10.1016/j.trpro.2016.05.312
[45] ASKAR Z, ZHANBOLAT S. Experimental investigations of freezing soils at ground conditions of Astana, Kazakhstan[J]. Sciences in Cold and Arid Regions, 2015, 7(4): 399–406.
[46] JOHNSON A E. Freeze-thaw Performance of Pavement Foundation Materials[D]. Iowa: Iowa State University, 2012.
[47] NAKAMURA D, GOTO T, ITO Y, et al. A basic study on frost susceptibility of rock: differences between frost susceptibility of rock and soil[C]//14th Conference on Cold Regions Engineering. August 31-September 2, 2009, Duluth, Minnesota, USA. Reston, VA, USA: American Society of Civil Engineers, 2009: 89–98.
[48] NURMIKOLU A. Degradation and Frost Susceptibility of Crushed Rock Aggregates Used in Structural Layers of Railway Track[D]. Tampere: Tampere University of Technology, 2005.
[49] LUND M S M, HANSEN K K, ANDERSEN I B. Frost susceptibility of sub-base gravel used in Pearl-Chain Bridges: an experimental investigation[J]. International Journal of Pavement Engineering, 2018, 19(11): 986–998. doi: 10.1080/10298436.2016.1230429
[50] AHAMMED M A. Subgrade soil frost susceptibility assessment for pavement design in Manitoba[C]// TAC 2018: Innovation and Technology: Evolving Transportation - 2018 Conference and Exhibition of the Transportation Association of Canada, Ottawa, 2018.
[51] U. S. ACE Engineering Manual: Pavement Criteria for Seasonal Frost Conditions[S]. Washington DC: Army Corps of Engineers, EM 1110-3-138, 1984.
[52] Ministry of Transportation Ontario. Pavement Design and Rehabilitation Manual[S]. Second Edition, 2013.
[53] SHENG D C, ZHANG S, YU Z W, et al. Assessing frost susceptibility of soils using PCHeave[J]. Cold Regions Science and Technology, 2013, 95: 27–38. doi: 10.1016/j.coldregions.2013.08.003
[54] DORÉ G, ZUBECK H K. Cold regions pavement engineering [M]. Reston: American Society of Civil Engineering, 2009, VA 20191–4400.
[55] LORANGER B. Laboratory Investigation of Frost Susceptibility of Crushed Rock Aggregates and Field Assessment of Frost Heave and Frost Depth[D]. Trondheim: Norwegian University of Science and Technology, 2020.
[56] SEEHUSEN J. Flytoget må kjøre i 80 [OL]. 2011: Available at: https://www.tu.no/artikler/flytoget-ma-kjore-i-80/238210. (SEEHUSEN J. The train must run at 80 km/h [OL]. 2011: Available at: https://www.tu.no/artikler/flytoget-ma-kjore-i-80/238210. (in Norwegian))
-
期刊类型引用(1)
1. 张闯,王苒,尚晓雨,杨阳,陈龙,董硕,刘泽,杨科. 水域地表基质调查方法探索——以衡水湖为例. 国土资源导刊. 2023(02): 109-113 . 百度学术
其他类型引用(2)