Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于二阶功准则的NPR锚索支护效果研究

胡杰, 何满潮, 李兆华, 冯吉利, 肖勇杰

胡杰, 何满潮, 李兆华, 冯吉利, 肖勇杰. 基于二阶功准则的NPR锚索支护效果研究[J]. 岩土工程学报, 2021, 43(10): 1870-1877. DOI: 10.11779/CJGE202110013
引用本文: 胡杰, 何满潮, 李兆华, 冯吉利, 肖勇杰. 基于二阶功准则的NPR锚索支护效果研究[J]. 岩土工程学报, 2021, 43(10): 1870-1877. DOI: 10.11779/CJGE202110013
HU Jie, HE Man-chao, LI Zhao-hua, FENG Ji-li, XIAO Yong-jie. Anchorage effect of NPR cable based on second-order work criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1870-1877. DOI: 10.11779/CJGE202110013
Citation: HU Jie, HE Man-chao, LI Zhao-hua, FENG Ji-li, XIAO Yong-jie. Anchorage effect of NPR cable based on second-order work criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1870-1877. DOI: 10.11779/CJGE202110013

基于二阶功准则的NPR锚索支护效果研究  English Version

基金项目: 

国家重大研发计划重点专项项目 2016YFC0600901

国家自然科学基金项目 41172116

国家自然科学基金项目 U1261212

中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室开放基金项目 SKLGD UEK1718

详细信息
    作者简介:

    胡杰(1992— ),男,博士研究生,主要从事岩土工程数值模拟方面研究工作。E-mail:hi_hujie@163.com

    通讯作者:

    李兆华, E-mail:472697969@qq.com

  • 中图分类号: TU457

Anchorage effect of NPR cable based on second-order work criterion

  • 摘要: NPR锚索因其具有恒定工作阻力和较大变形量的特性,已广泛应用于巷道的加固和监测预警中。为了研究NPR锚索在露天矿山边坡中的支护效果,首先基于有限差分软件FLAC3D中的锚索单元开发出NPR锚索单元,并通过数值拉伸试验验证了NPR锚索比普通锚索具有更优异的吸能特性;之后引入二阶功作为边坡稳定性评价准则,并将其植入显式动力学算法中,详细讨论了其合理性和可靠性;最后,以浩尧尔忽洞金矿西采场北帮开挖诱发的滑坡为研究对象,对现有普通矿用锚索和NPR锚索支护体系下的边坡稳定性进行对比分析。根据数值模拟结果可知,NPR锚索支护体系下的边坡稳定性明显优于普通矿用锚索。
    Abstract: Due to the characteristics of constant working resistance and steady large deformation, the NPR cable has been widely applied in monitoring and reinforcement of a large number of roadways. In order to study the anchorage effect of NPR cables in open-pit slope, firstly, the NPR cable element is developed based on the cable element in the finite difference software FLAC3D, and it is proved by the tensile tests that the NPR cable has better energy absorbing capacity than the traditional one. Secondly, the second-order work criterion is then implemented, and the rationality and advantages of the second order work criterion as a safety factor in explicit numerical algorithm are discussed. Finally, the rock slope induced by the excavation at the north side of the west stope in Haoyaoerhudong Opencast Gold Ore is taken as the research object, and the stability of rock slope under the existing traditional mine cable support system and NPR cable support system is compared and analyzed. According to the numerical results, the global second-order work and kinetic energy of each loading step have the opposite variation tendency, and the slope stability of NPR cable support system is obviously better than that of the traditional mine cable.
  • 近年来,国内外学者针对经历循环荷载历史后土体的剪切特性进行了大量研究[1-5]。一般来说,循环荷载会使土体的超孔隙水压力增大,平均有效应力降低,从而导致土体的循环后强度降低。王淑云等[1]针对重塑粉质黏土,在不同围压下进行了一系列静三轴和动-静三轴不排水试验,发现粉质黏土的振后不排水强度衰减程度取决于动载引起的动应变和孔压值;郑刚等[2]认为原状土样的振后不排水抗剪强度显著衰减,而重塑土的抗剪强度变化不甚明显;Moses等[3]发现土体的振后不排水强度随循环荷载幅值的增加而减小;Yasuhara等[5]研究了重塑Ariake黏土的循环后剪切特性,发现循环荷载作用后土体累积孔压可以很好地评价振后不排水剪切强度,并提出了预测土体振后抗剪强度的经验模型。

    然而,经历循环荷载作用后的土体往往处于未固结和完全固结的中间状态,该状态可用振后固结度这一概念进行描述。目前针对原状软土在不同振后固结度条件下的剪切特性研究较少。因此,有必要针对不同振后固结度下的软土振后剪切特性进行研究。本文选取珠江入海口原状软土,通过一系列的动-静三轴试验,分析了初始围压,循环应力比以及振后固结度对土体振后剪切特性的影响,以期加深对软土振后静力特性的理解,为工程设计提供试验基础。

    试验选取珠江入海口原状软土为研究对象,土壤呈深灰色,取土深度为0~7 m。依据《土工试验规程(GB/T 50123—2019)》获得土体的基本物理力学指标和土体的粒径分布曲线分别见表1图1所示。

    表  1  原状软土基本物理力学指标值
    Table  1.  Indices of basic physical and mechanical properties of undisturbed soft soils
    物理力学特性取值
    天然密度ρ/(g·cm-3)1.54~1.79
    含水率w/%38.3~69.1
    孔隙比e1.12~1.91
    相对质量密度Gs2.71
    液限wL/%38.5~61.8
    塑限wP/%19.4~28.0
    塑性指数IP19.1~33.8
    渗透系数K/(10-7cm·s-1)8.79~10.80
    压缩系数av/MPa-10.48~1.15
    侧压力系数K00.44
    下载: 导出CSV 
    | 显示表格
    图  1  粒径分布曲线
    Figure  1.  Grain-size distribution curve

    通过薄壁取土器进行现场取土,并将原状土样保存在恒温恒湿箱中。按照《土工试验方法标准(GB/T 50123—2019)》的要求,将土体制成直径38 mm,高76 mm的原状试样,并采用真空饱和及反压饱和法对试样进行饱和。首先对所有圆柱试样进行真空饱和,然后将试样置于压力室内进行反压饱和,当B值达到0.95以上时,可认为土体已经饱和。随后,对试样施加一定的固结压力,进行等向固结,当试样排水体积速率小于100 mm3/h时,认为土样固结完成。为研究有效固结围压对振后强度的影响,本次试验中选取有效固结围压分别为20,40,60 kPa。

    对固结完成后的土体在不排水状态下开展循环三轴试验,并采用Sakai等[6]提出的循环应力比CSR描述循环偏应力大小,即

    CSR=q/2p0=q/2σ3, (1)

    式中,q为循环偏应力幅值,p0为固结完成后的有效围压。为研究CSR对振后土体强度的影响,在围压为60 kPa下,CSR值分别取0.08,0.17,0.25,0.33。循环轴向偏应力采用半正弦波形,频率为0.1 Hz,且循环振次为1000次。

    对振动后的试样再次进行固结过程,并采用振后固结度这一概念描述振后土体固结程度。试验过程中为得到不同振后固结度的土体,可通过向振后试样施加不同的反压。具体为:向经历循环荷载作用后的土体施加一定的反压pu,此时,振后土体在一定围压作用下进行固结,振动过程中产生的超孔隙水压力将逐渐降低直至与反压相等。因此,振后不同固结度Ur可通过下式计算得到,

    Ur=1pu(Δu)cy, (2)

    式中,pu为再固结过程中施加在试样上的反压,(∆u)cy为振动过程中产生的超孔隙水压力。

    当试样再次固结完成后,对土体进行三轴固结不排水剪切试验。其中,剪切过程中均采用应变控制,剪切速率为0.1%/min。当应变达到20%时,试验结束。对于经历和未经历循环荷载作用的土体而言,若静力剪切过程中应力应变曲线出现峰值点,其不排水抗剪强度为峰值偏应力的1/2;若未出现峰值点,则土体不排水抗剪强度取20%应变处对应偏应力的1/2。整个试验方案如表2所示,其中ST-20,ST-40和ST-60为未经历循环荷载作用的土体在不同围压条件下的静三轴试验。经历和未经历循环荷载作用的土体强度用Su表示。

    表  2  试验方案
    Table  2.  Test schemes
    试样编号p0 /kPaqampl/kPaCSR循环次数Ur/%Su/kPa
    U0120100.251000020.2
    U0220100.2510002524.4
    U0320100.2510007522.8
    U0420100.25100010033.0
    U0540200.25100010040.4
    U0660300.25100010039.5
    U0760100.08100010032.7
    U0860200.17100010031.5
    U0960400.33100010042.9
    ST-202028.5
    ST-404033.4
    ST-606033.5
    下载: 导出CSV 
    | 显示表格

    图2展示了循环荷载后完全固结试样在不同围压下的偏应力-应变曲线。其中,CSR=0.25,Ur= 100%。可以看出,不同围压下的q-ε曲线变化趋势相同。当应变较低时,应力在小应变范围内迅速增加。随着应变的增加,应力增速放缓,当轴向应变为20%左右时,偏应力趋于稳定。不同围压下完全固结的振后试样强度大于相同围压无循环荷载作用历史的土体静强度。例如,当围压为60 kPa时,试样的振后强度比未经历循环荷载作用下的强度大6.0 kPa。此外,对比发现,实验条件相同的情况下,振后土体的抗剪强度随着围压的增加基本呈增大趋势。具体为完全固结的振后试样在初始固结围压为20,40,60 kPa时,对应的抗剪强度分别为33.0,40.4,39.5 kPa。

    图  2  不同围压下振后土体的偏应力-应变曲线
    Figure  2.  Post-cyclic deviator stress-strain curves under different confining pressures

    图3展示了不同循环应力比循环荷载作用后完全固结试样(Ur=100%)的偏应力-应变曲线。其中,初始固结围压为60 kPa。可以看出,初始应变随着CSR的增加而增加。当CSR值分别为0.08,0.17,0.25和0.33时,对应的初始应变分别为0.24%,0.43%,0.66%,4.27%。当CSR>0.25时,试样的振后剪切强度明显大于静态剪切强度(表2)。相较于未经历循环荷载的土体静强度,当CSR=0.08时,振后土体强度增幅为-0.8 kPa;当CSR=0.33时,振后土体强度增幅为9.4 kPa。同样地,土体振后剪切强度随着CSR的增大而增大。当CSR从0.08增大到0.33时,土体振后剪切强度从32.7 kPa增大到42.9 kPa。

    图  3  不同循环应力比下振后土体的偏应力-应变曲线
    Figure  3.  Post-cyclic deviator stress-strain curves under different CSRs

    图4为不同振后固结度下土体的偏应力-应变曲线。其中,初始固结围压为20 kPa,CSR=0.25。通过与未经历动荷载的试样q-ε曲线对比发现,Ur在75%~100%存在临界值,使得振后土体强度等于相同围压下未经历动荷载作用的土体强度。当固结围压为20 kPa,固结度为0%,25%,75%,100%时,抗剪强度分别为20.2,24.4,22.8,33.0 kPa。试验结果表明土体的振后抗剪强度随Ur的增大而增加。

    图  4  不同振后固结度下振后土体的偏应力-应变曲线
    Figure  4.  Post-cyclic deviator stress-strain curves under different degrees of reconsolidation

    本文通过对珠江入海口原状软土开展一系列动、静三轴试验,对其振后强度特性进行了研究。

    (1)经历循环荷载作用后的土体,不同因素影响下对应的偏应力-应变曲线变化趋势基本一致。不同固结围压影响下,振后完全固结试样的振后抗剪强度大于未经历动荷载土体静强度。另一方面,土体振后抗剪强度随初始固结围压的增大呈增加趋势。

    (2)当循环应力比大于0.25时,振后完全固结状态下土体剪切强度明显大于相同围压下未经历循环荷载作用的土体静态剪切强度。另一方面,振后完全固结的土体,其振后剪切强度随着循环应力比的增大而增加。

    (3)土体振后抗剪强度随振后固结度的增加而增大,且振后固结度存在某一临界值,使得土体的振后抗剪强度与相同围压条件下未经历循环荷载作用的土体抗剪强度基本一致。

  • 图  1   NPR锚索结构示意图

    Figure  1.   Components of NPR cables

    图  2   NPR锚索单元实现流程

    Figure  2.   Implementation of NPR Cable element

    图  3   锚索拉伸试验模型

    Figure  3.   Tensile test model of cables

    图  4   锚索拉伸荷载-变形量曲线

    Figure  4.   Tensile force-axial deformation curves of traditional and NPR cables

    图  5   边坡研究区域

    Figure  5.   Research area of rock slope

    图  6   锚杆(索)布置图

    Figure  6.   Distribution of bolts and cables

    图  7   岩质边坡三维地质模型及锚杆(索)布置图

    Figure  7.   Geometric model for rock slope in 3D and distribution of bolts and cables

    图  8   最大剪应变云图

    Figure  8.   Contours of maximum shear strain

    图  9   4种工况下整体二阶功和动能对比图

    Figure  9.   Comparison between global second-order work and kinetic energy of rock slope under 4 working conditions

    图  10   传统矿用锚索及NPR锚索加固下边坡的整体二阶功对比图

    Figure  10.   Comparison of global second-order work of rock slope reinforced by traditional and NPR cables

    表  1   锚杆(索)物理力学参数

    Table  1   Physical and mechanical parameters for bolts and cables

    锚固类别强度/kN杨氏模量/GPa长度/m预应力/kN横截面/m2恒阻力/kN变形量/mm
    NPR锚索1500205277500.22388501000
    矿用锚索1500205277500.2238
    矿用锚杆800205800.373×10-3
    下载: 导出CSV

    表  2   边坡岩体物理力学参数

    Table  2   Physical and mechanical parameters of involved rockmass

    类型ρ /(kg·cm-3)E/GPaν c/MPaφ /(°)TS/MPa
    Ⅲ级片岩2.74.540.250.40350.12
    Ⅳ级片岩2.54.110.300.15280.10
    Ⅳa级片岩2.54.110.300.15280.10
    片岩破碎带2.42.500.350.02180.10
    开挖区2.54.110.300.15280.10
    下载: 导出CSV
  • [1] 何满潮. 露天矿高边坡工程[M]. 北京: 煤炭工业出版社, 1991.

    HE Man-chao. High Slope Engineering in Open-Pit Mine[M]. Beijing: China Coal Industry Publishing House, 1991. (in Chinese)

    [2]

    HE M C, GONG W L, WANG J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 29-42. doi: 10.1016/j.ijrmms.2014.01.007

    [3] 吕谦, 陶志刚, 李兆华, 等. 恒阻大变形锚索弹塑性力学分析[J]. 岩石力学与工程学报, 2018, 37(4): 792-800. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804002.htm

    LÜ Qian, TAO Zhi-gang, LI Zhao-hua, et al. Elasto-plastic analysis of large deformation cables[J]. Chinese Journal of Rock Mechanics and Engineering,2018, 37(4): 792-800. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804002.htm

    [4]

    CAI Y, ESAKI T, JIANG Y. A rock bolt and rock mass interaction model[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(7): 1055-1067.

    [5]

    LI C C. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 396-404. doi: 10.1016/j.ijrmms.2010.01.005

    [6]

    ORTLEPP W D, READ J J. Yieldable rock bolts for shock loading and grouted bolts for faster rock stabilization[J]. Mining Engineering, 1970, 60(3): 12-17.

    [7]

    ST-PIERRE L, HASSANI F P, RADZISZEWSKI P H, et al. Development of a dynamic model for a cone bolt[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(1): 107-114.

    [8]

    CHARETTE F, PLOUFFE M. A new rock bolt concept for under ground excavations under high stress conditions[C]//Proceedings of the 6thInternational Symposium on Ground Support in Mining and Civil Engineering Construction, 2008, Johannesburg.

    [9]

    LI C C. Field observations of rock bolts in high stress rock masses[J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 491-496. doi: 10.1007/s00603-009-0067-8

    [10]

    HE M, SOUSA L R E. Experiments on rock burst and its control[C]//Australasian Ground Control in Mining Conference, 2014, Sidney.

    [11] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6): 1081-1090. doi: 10.3321/j.issn:1000-6915.2009.06.001

    HE Man-chao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1081-1090. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.001

    [12]

    HE M, TAO Z, ZHANG B. Application of remote monitoring technology in landslides in the Luoshan mining area[J]. Mining Science and Technology, 2009, 19(5): 609-614. doi: 10.3969/j.issn.2095-2686.2009.05.011

    [13] 何满潮, 李晨, 宫伟力, 等. NPR锚杆/索支护原理及大变形控制技术[J]. 岩石力学与工程学报, 2016, 35(8): 1513-1529. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm

    HE Man-chao, LI Chen, GONG Wei-li, et al. Support principles of NPR bolts/cables and control techniques of large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1513-1529. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm

    [14] 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm

    HE Man-chao, GUO Zhi-biao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1297-1308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm

    [15]

    SUN X M, ZHANG Y, WANG D, et al. Mechanical properties and supporting effect of CRLD bolts under static pull test conditions[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(1): 1-9. doi: 10.1007/s12613-017-1372-y

    [16]

    HE M, LI C, GONG W, et al. Dynamic tests for a Constant-Resistance-Large-Deformation bolt using a modified SHTB system[J]. Tunnelling & Underground Space Technology, 2017, 64(5): 103-116.

    [17]

    Itasca . FLAC3D User Manual, Version 6.0[J]. Itasca Consulting Group Inc., USA2017.

    [18]

    LI Z H, JIANG Y J, TAO Z G, et al. Monitoring prediction of a rockslide in an open-pit mine and numerical analysis using a material instability criterion[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 2041-2053. doi: 10.1007/s10064-017-1224-z

    [19] 陶志刚, 李海鹏, 孙光林, 等. 基于恒阻大变形锚索的滑坡监测预警系统研发及应用[J]. 岩土力学, 2015, 36(10): 3032-3040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510046.htm

    TAO Zhi-gang, LI Hai-peng, SUN Guang-lin, et al. Development of monitoring and early warning system for landslides based on constant resistance and large deformation anchor cable and its application[J]. Rock & Soil Mechanics, 2015, 36(10): 3032-3040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510046.htm

    [20]

    ADHIKARY D P, DYSKIN A V. Modelling of progressive and instantaneous failures of foliated rock slopes[J]. Rock Mechanics and Rock Engineering, 2007, 40(4): 349-362. doi: 10.1007/s00603-006-0085-8

    [21] 杨有成, 李群, 陈新泽, 等. 对强度折减法若干问题的讨论[J]. 岩土力学, 2008, 29(4): 1103-1106. doi: 10.3969/j.issn.1000-7598.2008.04.047

    YANG You-cheng, LI Qun, CHEN Xin-ze, et al. Discussion on strength reduction using FLAC[J]. Rock & Soil Mechanics, 2008, 29(4): 1103-1106. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.04.047

    [22]

    PRUNIER F, CHOMETTE B, BRUN M, et al. Designing geotechnical structures with a proper stability criterion as a safety factor[J]. Computers and Geotechnics, 2016, 71(5): 98-114.

    [23]

    HILL R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3): 236-249. doi: 10.1016/0022-5096(58)90029-2

    [24]

    MERRIEN-SOUKATCHOFF V, DURIEZ J, GASC-BARBIER M, et al. Mechanical Stability Analyses of Fractured Rock Slopes[M]//Rockfall Engineering, New York: John Wiley & Sons, Inc, 2013: 67-112.

    [25]

    NICOT F, LERBET J, DARVE F. Second-order work criterion: from material point to boundary value problems[J]. Acta Mechanica, 2017, 228(7): 2483-2498. doi: 10.1007/s00707-017-1844-1

    [26]

    NICOT F, SIBILLE L, DONZE F, et al. From microscopic to macroscopic second-order work in granular assemblies[J]. Mechanics of Materials, 2007, 39(7): 664-684. doi: 10.1016/j.mechmat.2006.10.003

    [27]

    NICOT F, HADDA N, BOURRIER F, et al. Inertia effects as a possible missing link between micro and macro second-order work in granular media[J]. International Journal of Solids and Structures, 2012, 49(10): 1252-1258. doi: 10.1016/j.ijsolstr.2012.02.005

    [28]

    NICOT F, DARVE F, KHOA H D V. Bifurcation and second-order work in geomaterials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(8): 1007-1032.

    [29] 黄茂松, 曲勰, 吕玺琳. 基于状态相关本构模型的松砂静态液化失稳数值分析[J]. 岩石力学与工程学报, 2014, 33(7): 1479-1487. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407021.htm

    HUANG Mao-song, QU Xie, LÜ Xi-lin. Instability and static liquefaction analysis of loose sands with a state-dependent constitutive model[J]. Chinese Journal of Rock Mechanics & Engineering, 2014, 33(7): 1479-1487. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407021.htm

    [30] 吕玺琳, 赖海波, 黄茂松. 饱和土体静态液化失稳理论预测[J]. 岩土力学, 2014(5): 1329-1333, 1339. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405018.htm

    LÜ Xi-lin, LAI Hai-bo, HUANG Mao-song. Theoretically predicting instability of static liquefaction of saturated soils[J]. Rock & Soil Mechanics, 2014(5): 1329-1333, 1339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405018.htm

    [31] 吕玺琳, 钱建固, 黄茂松. 不排水加载条件下K0固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506007.htm

    LÜ Xi-lin, QIAN Jian-gu, HUANG Mao-song. Prediction of instability of K0-consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506007.htm

    [32] 刘洋, 樊猛, 晏洲毅. 常偏应力剪切条件下砂土失稳模式的离散元模拟[J]. 岩土工程学报, 2020, 42(3): 467-475. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003011.htm

    LIU Yang, FAN Meng, YAN Zhou-yi. DEM simulation of instability mode in sand under constant shear drained conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 467-475. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003011.htm

    [33]

    LI Z, DUFOUR F, DARVE F. Hydro-elasto-plastic modelling with a solid/fluid transition[J]. Computers & Geotechnics, 2016, 75(2): 69-79.

    [34]

    LI Z H, JIANG Y J, LV Q, et al. Consistent modeling of a catastrophic flowslide at the Shenzhen landfill using a hydro-elasto-plastic model with solid-fluid transition[J]. Acta Geotechnica, 2018, 13(6): 1451-1466.

    [35] 王立忠, 舒恒. Hill稳定条件在有限元法计算地基承载力中的应用[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3122-3131. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1079.htm

    WANG Li-zhong, SHU Heng. Application of hill's stability condition to bearing capacity computation of foundation with finite element method[J]. Chinese Journal of Rock Mechanics & Engineering, 2010, 29(7): 3122-3131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1079.htm

    [36]

    NICOT F, DAOUADJI A, LAOUAFA F, et al. Second-order work, kinetic energy and diffuse failure in granular materials[J]. Granular Matter, 2011, 13(1): 19-28.

    [37]

    NICOT F, DARVE F. Failure in rate-independent granular materials as a bifurcation toward a dynamic regime[J]. International Journal of Plasticity, 2012, 29(1): 136-154.

  • 期刊类型引用(13)

    1. 杨东东. 基于孔压静力触探的土层分类研究. 中国新技术新产品. 2024(04): 102-104 . 百度学术
    2. 马昌慧,陈义平,郭峰,李栋广. 浅析基坑工程的优化设计方法. 工程勘察. 2024(04): 26-30 . 百度学术
    3. 魏军. 大型自升式海工平台桩靴地基土工程特性试验研究. 江苏建筑. 2024(02): 96-100+120 . 百度学术
    4. 李伟. 软基处理PST桩复合地基加固机理及CPTU验证. 山西建筑. 2024(11): 76-80+85 . 百度学术
    5. 时文峰,丁川,仇涛,童立元,王逸凡,马海洋. 地下工程预制梁钢筋骨架安装与成型技术研究. 建筑技术. 2024(16): 1924-1928 . 百度学术
    6. 肖乾,袁颖,汪婷. 基于系统聚类算法的CPT土体分层试验研究. 湖北理工学院学报. 2024(06): 36-41 . 百度学术
    7. 卢云龙,戴正彬,汤国毅. 基于静力触探对深基坑突涌区地层扰动的分析. 土工基础. 2023(01): 157-160 . 百度学术
    8. 丁剑桥. 基于静力触探的桩基承载力及数值模拟分析. 安徽建筑. 2023(03): 135-136+173 . 百度学术
    9. 吴早生,胡春东,白浩东,沙鹏,黄曼,王天佐. 静力触探深度与垂直度实时智能监测系统的应用研究. 中国新技术新产品. 2023(04): 90-93 . 百度学术
    10. 曹振平,曾彪,张雨波,孟韬,周盛生,谷军. 基于CPTU的长江河漫滩相软土夹层分布特征与渗透特性评价. 勘察科学技术. 2023(03): 43-48+64 . 百度学术
    11. 吴早生,白浩东,胡春东,沙鹏,黄曼,张鑫,王天佐. 基于静力触探数据的绍兴平原地区土层参数分析评价. 岩土工程技术. 2023(06): 692-699 . 百度学术
    12. 郭全元,钟仕兴,肖旺. 基于孔压静力触探(CPTU)及扁铲侧胀试验(DMT)南沙软土力学特性研究. 广东土木与建筑. 2022(06): 26-29 . 百度学术
    13. 周燕国,王智男,马强,梁甜,陈云敏. ZJU-400离心机机载微型CPTu装置研制与性能测试. 岩土工程学报. 2022(S2): 11-15 . 本站查看

    其他类型引用(4)

图(10)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-08-10
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

/

返回文章
返回