Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions
-
摘要: 为了探寻黏土强度时效性的微观机理,将时效强度与板状黏土颗粒搭接方式和相互作用势能联系起来,颗粒间的相互作用力使颗粒朝着势能较低的位置搭接,当颗粒间相互作用势能最低时,时效强度达到稳定值。提出了可考虑两板状颗粒间夹角θ和距离d影响的颗粒相互作用总势能公式,可用Zeta电位代替表面电位来计算势能,计算结果与实际情况相吻合。通过计算可知:①黏土时效强度与电解质浓度有很大关系,电解质浓度较低时(≤10-3 mol/L),两颗粒相互垂直时的总势能最低;电解质浓度较高时(≥10-1 mol/L),两颗粒相互平行时的总势能最低,时效强度几乎不变,甚至会减小;中间电解质浓度是过渡状态;②两黏土颗粒的稳定搭接方式主要是垂直和平行,两颗粒之间总会趋于向稳定搭接方式转化,这也是时效强度经历一定时间而达到稳定值的过程;③解释了黏土触变强度恢复的原因,即颗粒会一直趋于搭接强度最高的垂直稳定搭接。Abstract: In order to explore its micro-mechanism, the time-dependent strength of clay is related to the overlapping mode and interaction potential of plate-like clay particles. The interaction force between the particles causes the particles to overlap toward a position with a lower potential energy. When the potential energy between the particles is the lowest, the time-dependent strength reaches a stable value. A total potential energy formula is proposed to consider the interaction between two adjacent plate-like particles with certain angle θ and distance d, where the Zeta potential can be used instead of surface potential to calculate the potential energy. The calculated results of the total potential energy are consistent with the actual situations. It is shown: (1) The time-dependent strength of clay has a close relationship with the electrolyte content. When the electrolyte concentration is low (≤10-3 mol/L), the total potential energy is the lowest while the two adjacent particles are perpendicular. When the electrolyte concentration is high (≥10-1 mol/L), the total potential energy is the lowest while the two adjacent particles are parallel, and the time-dependent strength is almost unchanged, or even reduced. (2) The stable overlap of clay particles is mainly vertical and parallel. The two adjacent particles will always tend to be overlapped each other in one of these two ways, and so it takes some time for clay to reach a stable value of the time-dependent strength. (3) The reason for the restoration of thixotropic strength of general clay may be explained as that particles will always tend to overlap vertically, and this overlap way leads to the highest strength of clay.
-
0. 引言
近几年来,新疆、内蒙古、甘肃等硫酸盐渍土地区的公路频繁出现明显的路面鼓胀变形[1-2],如图1所示。
对于硫酸盐渍土地区采用水泥、石灰等钙基改良土,引起公路、铁路等工程产生膨胀的问题,从20世纪90年代,国外学者便开展了相关的研究。Raymond等报道了格鲁吉亚3.5公里公路在施工后6个月内,在水泥稳定基层中发生了大量膨胀变形,取样检测表明钙矾石引起的土体体积变化是导致上拱和横向外拱的主要原因[3]。美国德克萨斯州82号公路、美国奥克拉荷马、达拉斯地区的67号和I-635号公路等都有石灰改良土被硫酸盐侵蚀形成钙矾石引起膨胀的类似问题[4-6]。McCarthy等在英国Oxford、Lias、Gault等区域现场工点发现了不同成分的钙基添加剂(水泥、石灰等)被硫酸盐侵蚀膨胀的现象[7]。
针对路面鼓胀病害,国内学者开展了相关研究。王军伟[1]提出内蒙古沙漠戈壁地区水泥稳定碎石基层沥青路面的拱起开裂病害主要是由基层的高温拱胀引起的。张海龙[2]提出路面横向隆起病害主要由路基盐胀作用和基层的热胀作用引起。许刚[8]针对以水泥稳定砂砾作为基层的道路在硫酸盐环境下路面鼓包的现象,提出了用级配砾石和级配碎石(柔性基层)替代水泥稳定砂砾(半刚性基层)的处治方法。蒲翠玲等[9-10]针对盐渍化的半刚性基层,提出在强度满足设计要求时,尽量选用二灰稳定土基层。沙爱民提出硫酸钠含量是稳定土强度发展与体积变化的内在决定因素[11]。高艳龙等[12]、胡江洋等[13]从理论上分析了高含硫量粉煤灰导致路面基层膨胀开裂、强度降低进而产生破坏的机理,但未进行生成产物的测试验证。宋亮等[14]基于硫酸盐结晶膨胀理论,提出了水泥稳定基层混合料中硫酸盐含量的合理控制范围。尧俊凯等[15]指出硫酸盐侵蚀水泥改良填料产生膨胀变形是路基上拱的主要成因。应赛等[16]提出了盐渍土冻结过程中的两种特征温度的理论计算模型,并与试验结果进行了对比。
目前中国对硫酸盐渍土地区沥青路面鼓胀变形的研究主要集中在硫酸盐结晶盐胀、温度膨胀、干缩、处治措施等方面。鉴于此,本文依托新疆硫酸盐渍土地区两条公路出现的鼓胀病害,在调研病害概况、地质环境、原材料特性等的基础上,取样进行了含盐量、矿物成分分析等,明确了路面鼓胀的机理,分析了硫酸盐侵蚀水泥稳定基层的反应条件及预防措施。
1. 路面鼓胀病害调查
本次病害调查路段位于新疆兵团农三师(阿克苏地区的图木舒克市),为季节性冻土分布区,最大冻土深度为69 cm。硫酸盐渍土发育,易溶盐含量范围为0.804%~4.51%,为硫酸盐中—强盐渍土。
1.1 农三师公路A(省道)病害调查
农三师公路A为省道,二级公路,路面结构从上到下依次为:4 cm沥青混凝土路面,20 cm水泥稳定砂砾基层。该公路2015年8月建成通车后4年内多次发生了开裂、鼓胀变形,并进行了养护维修,但问题仍未得到解决,如图2,3所示。
从图2中可以看出:K20+150断面路肩部位基层顶面局部出现了基层松散的情况(图2(b)),同时基层底面处有7 cm高的脱空,从路肩部位向道路中线延伸的脱空深度约为1.8 m。无论是松散基层填料还是块状基层材料表面均发白(图2(c),2(d))。
从图3中可以看出:K17+330断面路面结构、路基各层次分明,未见基层材料松散或脱空现象,但基层材料表面仍然发白。
1.2 农三师公路B(国道)病害调查
农三师公路B为国道,二级公路,2016年4月建成通车。路面结构自上而下依次为:4 cm中粒式沥青混凝土上面层+6 cm中粒式沥青混凝土下面层+1 cm下封层+25 cm水泥稳定砂砾基层+35 cm级配砾石底基层。通车3年来发生了严重的路面鼓胀变形,如图4所示。
从图4(a)中可以看出:该断面硬路肩处最大鼓胀量9 cm,靠近中心线部位的隆起量为5 cm。基层有松散的情况,但基层下方无空洞,路面上无裂缝。
从图4(b)中可以看出:K36+210断面处硬路肩及靠近硬路肩的一条车道整体发生了鼓胀变形,路面上无裂缝。硬路肩外侧开挖后发现基层底部与底基层顶面脱空,脱空高度为5 cm,从硬路肩向道路中线的脱空深度为2 m,空洞中有松散基层材料,空洞处最薄的板结状态的水泥稳定砂砾基层厚度由原来的25 cm变成了10 cm。
对比分析可知:公路A发生鼓胀变形的同时在路面上出现了横向裂缝,公路B虽然产生了显著的鼓胀变形,但是在路面上未见到横向裂缝。究其原因是虽然两条公路均为二级公路,但是公路A仅铺筑了4 cm厚的沥青混凝土面层,厚度较小,因此基层较小的鼓胀变形就会导致面层被拉裂。而公路B铺筑了10 cm厚的沥青混凝土面层,由于面层厚度较大,其抵抗基层鼓胀开裂的能力较强,因此虽然基层产生了较大的鼓胀变形,但在调查时路面未见开裂。
2. 路面鼓胀原因分析
在新疆阿克苏地区,可能引起路面鼓胀变形的原因有冻胀、热膨胀、硫酸盐侵蚀、基层碱集料反应等。
2.1 冻胀
调查路段路面鼓胀在冬季较低,在夏季高温时逐渐升高。因此可以排除冻胀引起路面鼓胀的原因。
2.2 热膨胀
调查路段中夏季高温季节鼓胀变形加剧,说明高温或高温差有可能引起路面结构中产生温度应力,导致路面鼓胀变形[1-2]。为此调查了新疆农三师附近同样存在高温及高温差地区的高速公路病害情况,附近地区的高速公路也有鼓胀现象,但病害程度不及图木舒克市附近的公路严重,说明温度升高虽然能使路面鼓胀病害加剧,但高温或高温差并不是产生路面鼓胀病害的唯一原因或主要原因。
2.3 硫酸盐侵蚀引起鼓胀变形
硫酸盐对路面结构中半刚性基层的侵蚀分为物理结晶和化学侵蚀两种,当条件具备时,两种类型的侵蚀可能同时发生[17-18]。
调查路段处于硫酸盐渍土地区,因此需要通过矿物成分分析等方式确定是否发生了硫酸盐侵蚀以及发生了何种硫酸盐侵蚀。
2.4 基层碱骨料反应引起鼓胀变形
碱骨料反应是半刚性基层原材料中可溶性碱(Na2O或K2O)与骨料中的活性成分在半刚性基层硬化后发生化学反应,生成物吸水膨胀致使基层鼓胀、开裂,这种现象被称为碱骨料反应[19]。
图5为公路A、公路B试坑中基层材料取样照片。从图中可以看出:基层骨料剖面未产生明显的反应环和反应边,路面表面未出现网状裂缝,加之两条公路出现鼓胀的时间均为3 a左右,因此可以推断这两条公路出现鼓胀病害的主要原因并非碱骨料反应。
由上述分析可知,农三师公路A(省道)、公路B(国道)产生严重的路面鼓胀变形的原因可能是硫酸盐侵蚀,同时高温及高温差又加剧了这些反应的发生。
3. 硫酸盐侵蚀分析
3.1 取样位置
为了深入剖析调查路段路面鼓胀机理,在两条公路的开挖部位取样进行了含盐量、矿物成分分析、PH值的测试,三项测试分别参照《公路土工试验规程:JTG 3430—2020》、《转靶多晶体X射线衍射方法通则:JY/T 009—1996》、《土壤检测:NY/T 1121.2—2006》中的相关规定执行。各个断面的试坑取样位置见图6,7。
3.2 试验结果分析
(1)公路A(省道)基层硫酸盐侵蚀分析
对公路A病害部位试坑取样的含盐量测试结果见表1,矿物成分、PH值检测结果见图8。
表 1 公路A病害部位含盐量测试结果Table 1. Test results of salt content in diseased parts of Highway A取样位置 试样编号 Cl− /SO2−4 含盐量/% 盐渍土名称 K20+150 1 0.018 1.002 硫酸盐中盐渍土 2 0.038 0.677 硫酸盐中盐渍土 3 0.048 0.709 硫酸盐中盐渍土 4 0.103 0.383 硫酸盐中盐渍土 Y1 0.090 0.428 硫酸盐中盐渍土 Y2 0.035 0.355 硫酸盐中盐渍土 Y3 0.061 0.588 硫酸盐中盐渍土 K17+330 5 0.201 1.705 硫酸盐中盐渍土 Y4 0.101 2.041 硫酸盐强盐渍土 Y5 0.067 0.717 硫酸盐中盐渍土 Y6 0.068 1.447 硫酸盐中盐渍土 从表1中可以看出:病害部位基层及路基材料均以硫酸盐中盐渍土为主,这为硫酸盐侵蚀的发生提供了外部环境条件。
从图8(a)中可以看出:公路A基层混合料的矿物成分以石英、方解石为主,路基填料的矿物成分与基层混合料的矿物成分大体相同。但是,在挖探的两个断面的基层混合料中均发现了钙矾石(1,2,5号样),而路基填料(3,4号样)中未发现钙矾石。在所有检测样品中均未发现硅灰石膏。
同时,图8(b)的测试结果也表明:基层中的含盐量范围为0.355%~2.041%,大部分含盐量均较高且非常不均匀;基层中的pH值范围为9.79~10.84,表现出了较强的碱性。由此判断公路A基层发生的硫酸盐化学侵蚀以钙矾石型侵蚀为主[15,17]。
Mehta等[20]研究表明,当侵蚀溶液pH值小于11.5~120时,钙矾石将继续与硫酸盐反应,生成石膏。因此,钙矾石能否在侵蚀溶液中稳定存在取决于侵蚀溶液的pH值。在公路A的病害部位,虽然其pH值及含盐量均满足生成石膏的条件,但由于基层中石膏的含量与路基中石膏含量接近,因此可以认为基层中的石膏为原材料中所含有的。
(2)公路B(国道)基层硫酸盐侵蚀分析
对公路B病害部位试坑取样的含盐量测试结果见表2,矿物成分、pH值检测结果见图9。
表 2 公路B病害部位含盐量测试结果Table 2. Test results of salt content in diseased parts of Highway B取样位置 试样编号 Cl− /SO2−4 含盐量/% 盐渍土名称 K45+500 6 0.670 1.614 亚硫酸盐中盐渍土 7 0.407 1.533 亚硫酸盐中盐渍土 8 0.111 0.570 硫酸盐中盐渍土 Y7 0.416 2.827 亚硫酸盐强盐渍土 Y8 0.444 2.635 亚硫酸盐强盐渍土 Y9 11.417 2.637 氯盐中盐渍土 Y10 0.095 0.568 硫酸盐中盐渍土 坡脚外原状土 0.181 7.838 硫酸盐过盐渍土 K36+210 10 0.262 1.352 硫酸盐中盐渍土 11 0.209 1.806 硫酸盐中盐渍土 13 0.518 0.135 亚硫酸盐非盐渍土 Y11 0.475 0.184 亚硫酸盐非盐渍土 从表2中可以看出:病害部位基层及路基材料均以硫酸盐、亚硫酸盐中盐渍土为主,这同样为硫酸盐侵蚀的发生提供了外部环境条件。
从图9(a)中可以看出:公路B基层混合料的矿物成分以方解石、白云石为主,路基填料的矿物成分与基层混合料的矿物成分大体相同。但是,在两个断面的基层混合料中均发现了硅灰石膏(6,7,9,10,11号样),而路基填料(8,12,13号样)中未发现硅灰石膏。在所有检测样品中均未发现钙矾石。同时,图9(b)的测试结果也表明:基层中的含盐量范围为1.352%~2.827%,含盐量很高且非常不均匀;基层中的PH值范围为8.83~11.68,表现出了较强的碱性。由此判断公路B基层发生的硫酸盐化学侵蚀以硅灰石膏(
Ca3SiSO4CO3(OH)612H2O )侵蚀为主[10,17]。公路B基层侵蚀产物中未发现钙矾石,且其侵蚀发生在通车3年内,因此可以推断出该公路基层侵蚀以直接生成硅灰石膏侵蚀为主。硅灰石膏是无任何胶结性的泥状体,在K36+210断面的空洞中出现了松散的基层材料也可以充分说明发生了硅灰石膏侵蚀。
综上可知:农三师的两条硫酸盐渍土地区的公路,虽然都发生了硫酸盐侵蚀水泥稳定基层的情况,但二者的侵蚀机理不同,公路A主要发生的是钙矾石型硫酸盐侵蚀,而公路B则主要发生的是硅灰石膏型硫酸盐侵蚀。
(3)两条公路硫酸盐侵蚀机理不同的原因分析
为了分析公路A和公路B硫酸盐侵蚀机理不同的原因,将两条公路试坑取样测得的盐分中各种离子的种类及含量绘制成曲线图,见图10,11。
从表1,2,图10,11中可以看出:虽然两条公路病害部位取样均以硫酸盐、亚硫酸盐中盐渍土为主,但其中离子的种类及含量存在较大差别。
公路A试坑盐分中的离子以
SO2−4 、Ca2+ 为主,因此在硫酸盐侵蚀的过程中主要发生的是SO2−4 带来的钙矾石型硫酸盐侵蚀。同时,由于K20+150断面处大部分测点的SO2−4 含量为0.18%~0.38%,而K17+330断面处大部分测点的SO2−4 含量为0.14%~0.22%,K20+150断面处的SO2−4 含量高于K17+330断面处的SO2−4 含量,因此K20+150断面基层侵蚀更严重,出现了松散的情况,而K17+330断面处基层完整性仍然较好。公路B试坑盐分中
Ca2+ 含量很高,同时含有一定量的SO2−4 和CO2−3 ,这为发生硅灰石膏型硫酸盐侵蚀提供了充足的SO2−4 和Ca2+ 。4. 基层中硫酸盐和碱的来源
由上述分析可知,公路A、B在运营3~4年时,基层材料中的含盐量均较高,加之处在碱性比较强的环境中,因而发生了硫酸盐侵蚀水泥水化产物导致路面鼓胀变形的病害。
综合分析《公路路面基层施工技术细则:JTGF20—2015》等规范发现,目前中国对路面基层粗集料的技术要求包括压碎值、针片状颗粒含量以及0.075 mm以下粉尘含量,对细集料规定了塑性指数、有机质含量以及硫酸盐含量,但是并未提出粗集料的含盐量要求以及基层混合料的总含盐量要求[21],而在施工过程中粗集料、拌合用水都可能带来盐分,加之路基及地基盐分迁移等,可能使得在施工及运营过程中基层混合料的总含盐量超标,进而出现硫酸盐侵蚀半刚性基层的病害。
此外,对新疆阿克苏地区水泥厂生产的水泥的碱含量等参数进行了抽检。结果表明阿克苏地区水泥厂生产的水泥的碱含量分别为0.73%和0.7%,超过了规范规定值(≤0.60%),这为半刚性基层发生硫酸盐侵蚀提供了额外的碱性环境。
5. 路面鼓胀预防措施
根据上述病害机理分析,在硫酸盐渍土地区预防半刚性基层病害的措施可从以下7个方面展开:①严格控制基层粗骨料、细骨料各自的含盐量及拌合后混合物的总含盐量;②严格控制拌合用水的矿化程度;③严格控制水泥中的碱含量,尽量采用低碱水泥;④采用高抗硫水泥或低铝酸钙水泥;⑤采取隔断措施,阻止路基、地基中的盐分向基层中迁移;⑥采取隔水、防水措施,切断硫酸盐侵蚀的必备条件;⑦采用级配砂砾石、级配碎石、沥青稳定碎石等柔性材料代替半刚性基层材料。
6. 结论
通过对新疆硫酸盐渍土地区两条公路出现的鼓胀病害部位取样进行含盐量、矿物成分分析、pH值测试,明确了这两条公路路面鼓胀变形机理:
(1)公路A试坑盐分中的离子以
SO2−4 、Ca2+ 为主,因此发生了钙矾石型硫酸盐侵蚀。(2)公路B试坑盐分中
Ca2+ 含量很高,同时含有一定量的SO2−4 和CO2−3 ,因此发生了硅灰石膏型硫酸盐侵蚀。(3)高温及水泥中碱含量超标加剧了两种硫酸盐侵蚀的发生。
(4)提出了预防沥青路面半刚性基层鼓胀变形的措施。
-
表 1 一价阳离子浓度与κ的关系
Table 1 Relationship between monovalent cation concentration and κ
浓度/(mol·L-1) 10-5 10-4 10-3 10-2 10-1 κ/(m-1) 107 3.3×107 108 3.3×108 109 表 2 不同厚度c颗粒的表面平均间距范围
Table 2 Ranges of average surface spacing of particles with different c
(nm) c 0.96 3.33 5.70 8.07 下限 7 10 10 10 上限 25 48 72 95 表 3 Zeta电位与表面电位的量值
Table 3 Values of Zeta potential and surface potential
电位 电解质浓度/(mol·L-1) 10-5 10-4 10-3 10-2 10-1 表面电位 -330.4 -271.9 -213.8 -157.1 -103.8 γ2 0.9947 0.9829 0.9462 0.8418 0.6047 Zeta电位 -46.2 -45.2 -41.5 -37.2 -28.4 γ2 0.1868 0.1798 0.1546 0.1268 0.0767 γ2 增大倍数5.32 5.47 6.12 6.64 7.88 -
[1] 张先伟, 孔令伟, 李峻, 等. 黏土触变过程中强度恢复的微观机理[J]. 岩土工程学报, 2014, 36(8): 1407-1413. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408006.htm ZHANG Xian-wei, KONG Ling-wei, LI Jun, et al. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408006.htm
[2] ZHANG X W, KONG L W, YANG A W. et al. Thixotropic mechanism of clay: a microstructural investigation[J]. Soils and Foundations, 2017, 57(1): 23-35. doi: 10.1016/j.sandf.2017.01.002
[3] 霍海峰, 齐麟, 雷华阳, 等. 天津软黏土触变性的思考与试验研究[J]. 岩石力学与工程学报, 2016, 35(3): 631-637. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603020.htm HUO Hai-feng, QI Lin, LEI Hua-yang, et al. Analysis and experimental study on thixotropy of Tianjin soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 631-637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603020.htm
[4] OGDEN F L, RUFF J F. Setting time effects on bentonite water-well annulus seals[J]. Journal of Irrigation and Drainage Engineering, 1991, 117(4): 534-545. doi: 10.1061/(ASCE)0733-9437(1991)117:4(534)
[5] OGDEN F L, RUFF J F. Strength of bentonite water-well annulus seals in confined aquifers[J]. Journal of Irrigation and Drainage Engineering, 1993, 199(2): 242-250.
[6] OSIPOV V I, NIKOLAEVA S K, SOKOLOV V N. Microstructural changes associated with thixotropic phenomena in clay soils[J]. Géotechnique, 1984, 34(3): 293-303. doi: 10.1680/geot.1984.34.3.293
[7] DERJAGUIN B V, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Acta Physicochim, URSS, 1941, 14: 633-662.
[8] VERWEY E J W, OVERBEEK J T G. Theory of the Stability of Lyophobic Colloids[M]. Amsterdam: Elsevier Publishing Company, Inc, 1948.
[9] PETER B L, JOHN C B. Relating clay yield stress to colloidal parameters[J]. Journal of Colloid and Interface Science, 2006. 296: 749-755. doi: 10.1016/j.jcis.2005.09.061
[10] SAKAIRI N, KOBAYASHI M, ADACHI Y. Effects of salt concentration on the yield stress of sodium montmorillonite suspension[J]. Journal of Colloid and Interface Science, 2005, 283: 245-250. doi: 10.1016/j.jcis.2004.08.181
[11] MISSANA1 T, ADELL A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. Journal of Colloid and Interface Science, 2000, 230: 150-156. doi: 10.1006/jcis.2000.7003
[12] 苗司晗. 2∶1型黏土团聚体稳定性及黏土水迁移中的离子特异性效应[D]. 重庆: 西南大学, 2017. MIAO Si-han. 2:1 Type Clay Aggregate Stability and Ion Specific Effect in Clay Water Migration[D]. Chongqing: Southwest University, 2017. (in Chinese)
[13] 陈宝, 田昌春, 郭家兴, 等. 地下水对压实高庙子膨润土冲蚀作用研究[J]. 岩土力学, 2016, 37(11): 3224-3230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611023.htm CHEN Bao, TIAN Chang-chun, GUO Jia-xing, et al. Erosion of compacted Gaomiaozi bentonite by groundwater flow[J]. Rock and Soil Mechanics, 2016, 37(11): 3224-3230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611023.htm
[14] 陈宝, 田昌春, 郭家兴, 等. 高庙子膨润土悬浮液的抗冲蚀流变特性[J]. 同济大学学报(自然科学版), 2017, 45(3): 317-322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703003.htm CHEN Bao, TIAN Chang-chun, GUO Jia-xing, et al. Anti-erosion Rheological Characteristics of Gaomiaozi Bentonite Suspension[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 317-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703003.htm
[15] SENG S, TANAKA H. Properties of very soft clays: a study of thixotropic hardening and behavior under low consolidation pressure[J]. Soils and Foundations, 2012, 52(2): 335-345. doi: 10.1016/j.sandf.2012.02.010
[16] VAN OLPHEN H. An Introduction to Clay Colloid Chemistry[M]. 2nd ed. New York: John Wiley & Sons, 1977.
[17] RUSSEL W B, SAVILLE D A. Colloidal Dispersions[M]. Cambridge: Cambridge University Press, 1991.
[18] HIEMENZ P C, RAJAGOPALAN R. Principles of Colloid and Surface Chemistry, Revised and Expanded[M]. Boca Raton: CRC Press, 2016.
[19] NGUYEN A, SCHULZE H J. Colloidal Science of Flotation[M]. Boca Raton: CRC Press, 2003.
[20] OTSUKI A. Coupling colloidal forces with yield stress of charged inorganic particle suspension: a review[J]. Electrophoresis, 2018, 39(5/6): 690-701.
[21] 郭霞, 傅强, 田锐, 等. 动态光散射技术测定土壤/黏土胶体的Hamaker常数[J]. 西南大学学报(自然科学版), 2016, 38(6): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201606016.htm GUO Xia, FU Qiang, TIAN Rui, et al. Dynamic light scattering technology determination the hamaker constant of soil/clay colloids[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(6): 74-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201606016.htm
[22] 刘成伦, 徐龙君, 鲜学福. 水溶液中盐的浓度与其电导率的关系研究[J]. 中国环境监测, 1999(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB199904008.htm LIU Cheng-lun, XU Long-jun, XIAN Xue-fu. Study on the relationship between concentration of salt solution and its conductivity[J]. Environmental Monitoring in China, 1999(4): 21-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB199904008.htm
[23] ELIMELECH M, GREGORY J, JIA X. Particle Deposition and Aggregation: Measurement, Modelling and Simulation[M]. Oxford: Butterworth-Heinemann, 2013.
[24] 陈永贵, 蒯琪, 叶为民, 等. 高压实膨润土膨胀力预测研究[J]. 同济大学学报(自然科学版), 2018, 46(12): 1628-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm CHEN Yong-gui, KUAI Qi, YE Wei-Min, et al. Prediction of swelling pressure for compacted bentonite[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1628-1636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm
[25] 商翔宇, 鲁巨明, 杨晨, 等. 考虑黏土特性的离散元程序开发[J]. 防灾减灾工程学报, 2016, 36(4): 657-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm SHANG Xiang-yu, LU Ju-ming, YANG Chen, et al. Development of discrete element code considering the characteristics of clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(04): 657-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm
[26] 周青. 蒙脱石层间域微结构及其吸附有机物的分子模拟[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015. ZHOU Qing. Molecular Simulations of the Montmorillonite Interlayer microstructure and the Sorption towards Organics[D]. Guangzhou: Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2015. (in Chinese)
[27] 周金虹. 黏土矿物孔道表面与流体相互作用的分子模拟[D]. 南京: 南京大学, 2019. ZHOU Jin-hong. Molecular Simulation of Interaction Between Clay Mineral Pore Surface and Fluid[D]. Nanjing: Nanjing University, 2019. (in Chinese)
[28] HOU J, LI H, ZHU H, et al. Determination of clay surface potential: a more reliable approach[J]. Soil Science Society of America Journal, 2009, 73(5): 1658-1663.
[29] HU F, XU C, LI H, et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil and Tillage Research, 2015, 147: 1-9.
-
期刊类型引用(9)
1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 . 百度学术
2. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 . 百度学术
3. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 . 百度学术
4. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 . 百度学术
5. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 . 百度学术
6. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 . 百度学术
7. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
8. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 . 百度学术
9. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 . 百度学术
其他类型引用(6)