Influences of pipe-jacking of rectangular utility tunnels on adjacent pipelines
-
摘要: 顶管施工引起的地层移动造成邻近管线产生不均匀沉降甚至破坏,而以往研究顶管、土体与邻近管线相互作用的有限元方法大多借鉴盾构的模拟方式,未考虑土体变形受到掘进机约束以及顶推的持续扰动作用的影响,造成计算结果不准确。基于Plaxis 3D平台建立管廊、土体及邻近管线相互作用的三维有限元模型,通过土体收缩率模拟地层损失带来的影响,并结合实测数据提出了适用于顶管施工特点的土体收缩率的确定方法。在此基础上,对顶管掘进参数进行敏感性分析,总结出施工的最优掘进参数。结果表明,基于土体收缩率模拟顶管施工的计算结果与实测数据吻合良好,模拟可靠。与既有研究相比,考虑了顶管施工过程中掘进机约束作用以及顶推持续扰动的作用,这与实际工程更加接近。Abstract: The ground motion caused by pipe jacking will induce uneven settlement and even damage on the adjacent pipelines. However, most previous finite element studies on pipelines-soil-tunnel interaction have used shield modeling as a reference without considering the influences of the restraint effects of the tunneling machine and continuous disturbance in the construction process of pipe jacking, resulting in inaccurate calculated results. The three-dimensional finite element model for pipelines-soil-tunnel interaction is established by using the Plaxis 3D software. The influences caused by formation loss is simulated by soil contraction, and based on the measured data, a method for determining the soil contraction suitable for pipe jacking is proposed. Then, the sensitivity analysis of the influencing factors of pipe jacking construction is carried out to summarize the optimal driving parameters of construction. The results of this study show that the calculated results are in good agreement with the measured data and the simulation is reliable. Unlike the previous researches, in this study the influences of the restraint effects of the tunneling machine and continuous disturbance in the construction process of pipe jacking are considered, which is closer to the real projects.
-
0. 引言
土的渗透特性是土重要的工程性质之一,影响着土木工程的施工。目前无黏性土渗透特性的试验研究,多是采用竖向圆柱体模型槽进行,试验中土体受到的水流的作用方向是由下至上的竖直方向,而对于土体承受水平向渗流时土体渗透特性的研究不多[1],渗流方向对土体渗流变形特性的研究还尚未给予足够重视。对土渗流的研究表明,实际施工中渗流的优势方向往往是水平方向,通常土体水平向的渗透性大于竖向,而抵抗水平向渗透破坏的能力低于抵抗竖向渗透破坏的能力[2-6]。
本文针对粉砂竖向和水平向渗透特性研究存有的不足,利用自主设计的实验装置,对粉砂开展竖向和水平向渗流试验,对比分析了两种不同方向渗流场下粉砂的渗透特性。基于室内模拟试验,建立三维离散元与计算流体力学耦合的细观力学模型,对粉砂在竖向和水平向的渗流情况进行分析和计算。通过数值计算结果,对竖向和水平向渗流作用下的粉砂内部接触力、渗流速度及流场的分布规律进行细观分析,将数值模拟与室内试验的结果进行分析、比较。
1. 不同渗流方向下粉砂渗透变形室内试验模拟
1.1 试验仪器和方法
(1)试验仪器
粉砂的竖向渗透变形试验借助实验室自主设计的圆柱形渗流试验仪进行,该装置示意图如图1所示。粉砂水平向渗流渗透变形特性的研究是在自主设计的水平渗流试验装置中进行的,见图2。模型由进水系统,装样区及排水系统3个主要部分组成。进水系统可以通过对进水水头高度的调节自由选择水头加载高度。
(2)试验方法及步骤
粉砂烘干并分层装样。称样烘干24 g取出装样,每10 cm分为一层进行装样;排气饱和。装样完成,分次提升水箱供水高度对试验土样进行饱和,最后一次使水头抬升至与试样顶端齐平,静置24 h;逐级调整水头进行试验。逐级抬升水头高度,对测压管水头高度读数并记录,同时量测渗流量大小,记录试验进程中的渗流现象,直至该级渗流稳定,转入下一级水头;当试验过程中,流量忽然增大,并出现明显的渗流通道,可以认定为试样发生渗透破坏,不再继续加大水头高度,试验完成。
1.2 粉砂竖向和水平向渗流试验结果分析
对粉砂在竖向渗流下的渗透流速受水力梯度影响下的变化规律进行研究,得到渗流速度随水力梯度变化的关系曲线,如图3所示。对粉砂在水平向渗流作用下的临界水力梯度进行研究,结果如图4所示。
由图3得到,在水力梯度
i <0.787时,渗流速度随水力梯度呈近似线性的变化,此时土样处于渗流稳定阶段;当水力梯度为1.1时,渗流速度忽然增大,粉砂颗粒流失量也徒增,此时土体发生渗透变形。图4粉砂在水平向渗流下的变化规律显示:水力梯度小于0.45时,粉砂土渗透流速随着水力梯度的增大呈线性增长,水流清澈,粉砂流出较少。当水力梯度增至0.52时,试样整体的流速瞬间增大,粉砂流出量明显增多且呈持续流失状态,此时粉砂土样内部颗粒运移不再规律,试样开始发生渗透破坏。表1给出粉砂在两种渗流方向下的渗透系数、临界坡降与破坏坡降。粉砂在竖向渗流时的临界水力梯度为0.787,破坏水力梯度为1.10;而水平向渗流中,所能承受的临界水力梯度为0.45。在影响因素诸如种类、级配、密度、孔隙大小等相同的前提下,粉砂竖向渗流的临界水力梯度比水平向高出近44%。由于土体在受到水平向渗流时,平均渗透系数取决于最透水土层的厚度和渗透性;而对于竖向渗流,其平均渗透系数取决于最不透水土层的渗透性。加之,竖向渗流中重力作用与渗流方向一致,会产生对土层的压密作用,使得该渗流方向下的渗透系数小于水平向,而土体能够承受的水头高于水平向的渗流。
表 1 不同渗流方向下粉砂渗透系数、临界坡降和破坏坡降Table 1. Datat of permeability coeffieient of silt, critical slope and failure slope under different seepage directions渗流方向 渗透系数/(10-4 cm·s-1) 临界水力梯度 破坏水力梯度 竖向 6.13 0.787 1.10 水平 6.25 0.450 0.52 2. 不同渗流方向下粉砂渗透变形颗粒流模拟
对于固相颗粒,通过求解运动和动量方程模拟颗粒运动,采用离散元的颗粒流理论进行模拟;对于液相介质,采用均一化流体计算技术模拟其在孔隙中的运动,也就是通过求解平均Navier-Stokes方程模拟孔隙中流体的运动[7-9]。
2.1 数值模型
对粉砂土不同向渗流形态的模拟中,边界条件的界定也略有不同。竖向渗流下,颗粒周边的边界为固壁边界条件,上下为压力边界条件。水平向渗流下,模型的前后和上下边界为固壁边界条件,左右设置为压力边界条件和自由边界条件。生成的土体模型如图5所示。
对于竖向的渗流,按照试验中模型,上覆为自由边界,没有压重。对于水平向的渗流,试样在重力和浮力作用下保持平衡,当作用渗流力后,土中小颗粒将从模型右侧流出,因此在试样右侧设置了相互交叉垂直的线墙,如图6所示。
2.2 数值计算流程
采用PFC3D对流固耦合问题进行计算流程如图7所示。
2.3 数值模拟结果
(1)粉砂土竖向和水平向渗流下渗透变形情况
a)粉砂竖向渗流下的渗透变形情况
图8给出了粉砂在竖向渗流作用下,土样随水力梯度的变化情况。
水力梯度从0.1,0.2,0.3,...,逐级增加,水力梯度施加至0.7时,粉砂几乎无变化;当水力梯度增至0.8时,土样出现从底部被整体抬升的趋势,发生少量细小颗粒流失的现象;水力梯度继续增至1.0时,土体发生了整体的抬升,土体表面颗粒簇发生整体迁移的现象。模拟结果表明,试样的临界水力梯度在0.8左右。
b)粉砂水平向渗流下的渗透变形情况
粉砂土的水平向渗流中水力梯度也是由0.1,0.2,0.3依次逐级抬升,图9给出了粉砂土在水平向渗流下试样随水力梯度变化的情况。
从图9中可以看出,当水力梯度增至0.3时,试样底部细小颗粒也开始发生迁移,水力梯度继续增大至0.4,此时试样发生颗粒成团的流失,土体发生了渗透变形。水力梯度加载至0.5时,土体颗粒发生了更加显著的整体性渗流破坏。根据模拟结果,得到粉砂土水平向渗流的临界水力梯度在0.4左右。
(2)粉砂土竖向和水平向渗流下配位数变化情况分析
土体的配位数表示了颗粒间的接触数,是表达土颗粒间接触情况的参数之一,总配位数是颗粒与颗粒之间以及颗粒与墙之间的平均接触数,反映出试样的压密程度;力学配位数为颗粒与颗粒之间接触数大于2时的颗粒接触数,反映额土骨架的压密程度。图10,11给出了粉砂土在竖向和水平向渗流作用下,配位数随水力梯度的变化情况。
图10,11可以看出,当竖向渗流的水力梯度为0.8,水平向渗流水力梯度为0.4时,土体的两个配位数都发生迅速的下降,说明此时的土体状态发生了较大的变化,即渗透变形发生。图中,总配位数和力学配位数都在随着水力梯度的增大而不断降低,总的配位数较力学配位数下降更快速,幅度也更大。这是由于水力梯度增大,颗粒发生了移动,颗粒的接触数减小,但在水力梯度增加至土体渗透变形前的整个过程中,总配位数下降幅度明显大于力学配位数,说明发生移动的多为小颗粒,小颗粒的运移使土体中接触数减少,随之小颗粒填充至骨架颗粒孔隙间,与大颗粒发生接触,保持了力学配位数的大小。
3. 结论
(1)粉砂在水平向能承受的渗流破坏作用一般低于竖向渗流。
(2)数值模拟结果与模拟试验过程中粉砂的渗流变化过程相符,数值方法所测得的临界水力梯度与试验测得的结果亦较为吻合。
(3)竖向和水平向渗流下,粉砂的总配位数和力学配位数均随着水力梯度的抬升而衰减,当土体发生渗透破坏,土体配位数出现迅速降低。
-
表 1 各土层土体参数取值表
Table 1 Soil parameters
土体名称 γ /(kN·m-3)e w /%c′ /kPaφ′ /(°)Cs Cs Eref50 /MPaErefoed /MPaErefur /MPaGref0 /MPa①01素填土 — — — 6 28 — — 8 8 24 40 ①1黏质粉土 19.1 0.809 28.1 2 28 0.0574 0.008 8.85 7.08 45.72 90.64 ①2砂质粉土 19.5 0.704 25.5 0 28 0.0443 0.005 10.92 8.73 69.64 102.7 ②粉砂夹粉土 19.5 0.733 24.8 0 28 0.0337 0.0044 13.73 10.98 75.7 114.33 ③1淤泥质黏土 17.6 1.22 42.7 7 26 0.2575 0.0808 2.26 1.81 5.18 40 ③2淤泥质黏土 17.6 1.215 42.6 7 26 0.2575 0.0808 2.24 1.79 5.15 40 ④1黏土 18.9 0.901 31.3 4 28 0.0755 0.0134 5.7 5.7 28.5 57 ⑤黏土 19.0 0.704 31.9 4 28 0.0809 0.0145 5.4 5.4 27 54 -
[1] MROUEH H, SHAHROUR I. A simplified 3D model for tunnel construction using tunnel boring machines[J]. Tunnelling and Underground Space Technology, 2008, 23(1): 38-45. doi: 10.1016/j.tust.2006.11.008
[2] 赖金星, 王开运, 侯丹丹, 李锋宁. 砂土地层顶管施工土体变形规律三维数值分析[J]. 西安科技大学学报, 2015, 35(4): 450-457. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201504010.htm LAI Jin-xing, WANG Kai-yun, HOU Dan-dan, et al. 3D numerical analysis on displacement regularity of pipe jacking sewer in sand soil stratum[J]. Journal of Xi'an University of Science and Technology, 2015, 35(4): 450-457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201504010.htm
[3] LI C, ZHONG Z L, HE G N, et al. Response of the ground and adjacent end-bearing piles due to side-by-side twin tunnelling in compound rock strata[J]. Tunnelling and Underground Space Technology, 2019, 89: 91-108. doi: 10.1016/j.tust.2019.03.018
[4] 魏纲, 朱奎. 顶管施工对邻近地下管线的影响预测分析[J]. 岩土力学, 2009, 30(3): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903053.htm WEI Gang, ZHU Kui. Prediction for response of adjacent pipelines induced by pipe jacking construction[J]. Rock and Soil Mechanics, 2009, 30(3): 825-831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903053.htm
[5] 邴风举, 王新, 习宁, 等. 顶管施工三维数值模拟及土质适用性研究[J]. 地下空间与工程学报, 2011, 7(6): 1209-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201106030.htm BING Feng-ju, WANG Xin, XI Ning, et al. 3D numerical simulation of pipe jacking and its soil applicability study[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1209-1215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201106030.htm
[6] 张文瀚, 谢雄耀, 李攀. 浅层顶管隧道施工对路基变形影响数值分析[J]. 地下空间与工程学报, 2011, 7(增刊2): 1619-1624, 1652. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2011S2014.htm ZHANG Wen-han, XIE Xiong-yao, LI Pan. Numerical analysis of deformation of highway roadbase caused by shallow underground pipe jacking in sand soil[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2): 1619-1624, 1652. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2011S2014.htm
[7] 杨金虎, 陈卫兵, 张莉, 等. 双层顶管隧道施工引起的土体竖向变形规律研究[J]. 科学技术与工程, 2014, 14(29): 274-279. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201429054.htm YANG Jin-hu, CHEN Wei-bing, ZHANG Li, et al. Study on vertical deformation of soil caused by construction of double layers of pipe jacking tunnel[J]. Science Technology and Engineering, 2014, 14(29): 274-279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201429054.htm
[8] YIN M L, JIANG H, JIANG Y S, et al. Effect of the excavation clearance of an under-crossing shield tunnel on existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 78: 245-258.
[9] LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019, 89: 78-90.
[10] 魏纲, 徐日庆, 屠玮. 顶管施工引起的土体扰动理论分析及试验研究[J]. 岩石力学与工程学报, 2004, 23(3): 476-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200403023.htm WEI Gang, XU Ri-qing, TU Wei. Testing study and analysis on soil disturbance induced by pipe jacking construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(3): 476-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200403023.htm
[11] BRINKGREVE R B J, BROERE W. Plaxis Material Models Manual[M]. Netherlands: Delft, 2006.
[12] 冯海宁, 龚晓南, 徐日庆. 顶管施工环境影响的有限元计算分析[J]. 岩石力学与工程学报, 2004, 23(7): 1158-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200407026.htm FENG Hai-ning, GONG Xiao-nan, XU Ri-qing. Finite element analysis of influence of pipe-jacking construction on environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1158-1162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200407026.htm
[13] 王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6): 1766-1774. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm WANG Wei-dong, WANG Hao-ran, XU Zhong-hua. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and Soil Mechanics, 2013, 34(6): 1766-1774. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm
[14] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2): 269-278. LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al. Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 269-278. (in Chinese)
-
期刊类型引用(4)
1. 应宏伟,陈雨,王阳扬,刘冠. 含碎石芯软黏土复合试样大三轴试验研究. 湖南大学学报(自然科学版). 2024(11): 104-114 . 百度学术
2. 邱俊峰,叶晨峰,陈峰,郑铖杰. 镍铁渣粉水泥固化砂土剪切强度与应力应变关系研究. 湖南文理学院学报(自然科学版). 2023(02): 78-82+95 . 百度学术
3. 殷天军,宁华宇,寇晓强. 深中通道沉管基础水下深层水泥搅拌桩应用全过程探讨. 中国港湾建设. 2022(07): 11-16 . 百度学术
4. 张振,郑文强,叶观宝,陈勇. 循环荷载下水泥土桩复合单元体变形特性及其地基长期沉降计算方法. 中国公路学报. 2022(11): 21-29 . 百度学术
其他类型引用(2)