Mechanical behaviors of cemented sand and gravel materials based on triaxial tests during unloading and reloading
-
摘要: 了解胶结砂砾石坝坝料卸载—再加载路径下的力学行为,有助于提高水库蓄、泄水时该坝应力、变形预测结果的准确性。利用大型三轴剪切仪开展了胶凝掺量100 kg/m3的胶结砂砾石料在不同围压与应力水平下的三轴卸载—再卸载试验,并结合相应的一次加载三轴剪切试验结果,系统分析了胶结砂砾石料三轴卸载—再加载路径下的应力变形特征。结果表明:胶结砂砾石料受应力卸载—再加载作用后,其内摩擦角与黏聚力均有所提高,增强了该材料的峰值强度;在同一围压下,不同应力水平对胶结砂砾石料卸载回弹模量值的影响较小,随着围压的增大,卸载回弹模量增加且增幅逐渐减小,不同围压下平均回弹模量与初始模量的比值基本相同,直接取其平均值;不同围压下胶结砂砾石料在加载阶段的体积变化规律与一次加载试验的体积变形规律基本相同,均呈先增大后减小,试件出现先剪缩后剪胀现象;在同一应力水平下,随着围压的增大,试件卸载时发生的体胀现象逐渐变为体缩。研究成果可为构建更加合理的胶结砂砾石料本构模型提供了重要试验依据。Abstract: Understanding the mechanical behaviors of cemented sand and gravel materials during unloading and reloading in the context of the unloading and reloading paths can help enhance the accuracy of predicting the stress and deformation of cemented sand and gravel dams during reservoir storage and discharge. To this end, a large shear triaxial instrument is used to conduct the triaxial unloading and reloading tests on the cemented sand and gravel materials under different confining pressures and stress levels with a cemented content of 100 kg/m3. The triaxial shear test results obtained under loading are systematically analyzed along with the stress and deformation of the materials obtained in the triaxial tests pertaining to the unloading and reloading paths. The results indicate that the increase in the internal friction angle and cohesive force enhances the peak strength of the cemented sand and gravel materials in the unloading and reloading paths. The stress levels do not considerably affect the unloading modulus of the materials. However, with the increase in the confining pressure, the resilient modulus first increases nonlinearly and later decreases gradually. Under different confining pressures, the ratio of the average of the resilient modulus to the initial modulus remains constant. The variation trend of the volume of the cemented sand and gravel materials at the loading stage of the triaxial unloading and reloading tests is the same as that during the loading tests, that is, it first increases and later decreases. With the increase in the same confining pressure under the stress level, the unloading carrier shrinkage of the specimen gradually changes to unloading carrier expansion. These findings may provide valuable experimental bases to construct a realistic constitutive model for cemented sand and gravel materials.
-
0. 引言
胶结砂砾石料是一种新型改良砂砾石材料,是在天然废弃石料、破碎石料或砂砾石料等材料中加入少量水泥、粉煤灰等胶凝剂形成的[1-2]。该材料的组成与碾压混凝土基本相同,但与一般碾压混凝土相比,该材料胶凝掺量较小,其集料可就地取材,安全经济,且对环境负面影响较小,已成功在一些胶凝砂砾石坝或围堰建设或边坡、地基加固工程中得到应用[2]。胶凝砂砾石坝正常运行时,尤其是泄水、蓄水时,其坝身某些部位经历卸载—再加载荷载作用。目前已有的胶结砂砾石料本构模型大多是依据一次加载的三轴试验结果建立的,基于这些模型得出的大坝应力、变形结果与该坝实际运行时的相应值存在一定差异。因此,用于工程筑坝的胶结砂砾石料本构模型有必要考虑其卸载—再加载特性的影响。
当前,国内外学者们已对一些岩土材料的卸载—再加载力学性能进行一番探究:文献[3~7]对黏土、砂土卸载—再加载力学特性进行了研究,发现这些土料均存在卸载体缩现象;文献[8, 9]对多种粗粒土进行了卸载—再加载三轴固结排水剪切试验,重点分析了该类材料在卸载—再加载条件下的强度、变形特性,发现该材料存在卸载体缩现象,其抗剪能力高于一次加载,认为回弹模量Eur随应力水平的增加先增大后减小,但变化较小,随着围压的增加,该模量显著增大,此外,还给出了回弹模量与初始模量之比Kur的取值范围。Zhou等[10]通过开展不同次数卸载再加载条件下花岗岩风化土壤三轴试验研究,揭示了卸载—再加载路径对该材料强度特性、变形模量等力学特性的影响;杨贵等[11]为了研究高聚物堆石料,采用中型三轴剪切仪对其进行回弹模量试验,分析高聚物堆石料卸载—再加载条件下的变形特性,并结合邓肯-张模型,揭示了回弹模量随围压与应力水平变化的规律;Xu等[12]通过完成不同水分掺量条件下冻土三轴压缩和加载-卸载循环试验,探究了不同水分掺量对冻结黄土在受荷过程中的力学行为与破坏特征。与上述材料相比,虽然胶结砂砾石料静力三轴剪切试验研究已有一些报道[13-16],但大多还是采用一次加载的试验条件开展的,对胶结砂砾石料静力卸载—再加载力学特性的研究甚少。仅笔者给出了胶结砂砾石料的卸载回弹模量,但对整个卸载—再加载曲线特征未进行系统分析[17]。目前用于胶结砂砾石坝有限元计算的回弹模量[18]一般直接引用砂、黏土或者堆石料的回弹模量与初始模量比值与初始模量的乘积,也可尝试直接采用高聚物堆石料的回弹模量,但这些材料与胶结砂砾石料的集料或胶凝剂存在明显区别,上述材料包括回弹模量在内的卸载—再加载特性是否适用于胶结砂砾石料还尚未可知。
基于此,本文采用大型三轴剪切仪对胶凝掺量100 kg/m3的胶结砂砾石料进行了卸载—再加载试验,并结合相应的一次加载试验结果[16],重点分析胶结砂砾石料在卸载—再加载条件下的强度特性、卸载模量以及卸载体缩随围压与应力水平变化的规律。
1. 试验仪器、用料及试验方案
参照《胶结颗粒料筑坝技术导则》(SL678— 2014)[19],此次三轴卸载—再加载试验中胶结砂砾石料采用与之前的胶结砂砾石料一次加载三轴试验[15-16]试件同样的试验材料与配比,即胶凝剂采用海螺牌普通硅酸盐水泥,水胶比取1.0,胶凝掺量为100 kg/m3;细骨料为南京市场出售的中粗砂;粗骨料为南京郊区的破碎石料,级配如图1所示。
三轴试验试件均采用直径300 mm,高700 mm的模具制成,制备过程:①依据骨料级配筛选骨料;②按胶结砂砾石料的材料组成与掺量将胶凝剂、粗细集料及水等材料混合并拌和均匀;③将胶结砂砾石料分5层装入圆筒模具,每层分别采用振动碾振实2 min,使试件成形;④试件养护龄期为28 d。在进行胶结砂砾石料三轴卸载—再加载试验之前,胶结砂砾石料试件需静置2~3 h,再借鉴高聚物堆石料的真空抽气饱和方法[11]进行本试验试件的饱和,确保其试验过程中测试的饱和度达到95%以上。
胶结砂砾石料卸载—再加载三轴试验同样采用南京水利科学研究院岩土工程所的TYD-1500静动力三轴试验仪进行的,该仪器综合精度指数大于1%,最大围压为4 MPa,最大轴向载荷为1500 kN。
试验试件加载至设定的应力水平后开始卸载,待偏应力卸载至0,再重新加载至原方案设定的下一个应力水平,继续卸载。试验过程中采用的卸载、加载阶段剪切速率均为1 mm/min。试验围压
分别为300,600,900,1200 kPa,卸载点的应力水平s分别为0.25,0.65,0.80。 2. 试验结果与分析
2.1 应力-应变曲线特征分析
图2为胶凝掺量为100 kg/m3的胶结砂砾石料卸载—再加载三轴剪切试验应力-应变曲线,从图2中可看出:胶结砂砾石料的卸载阶段与其再加载阶段的曲线不能重合,形成了与粗粒土、天然黏土等材料形状[7-9]略有不同的新月形滞回圈,这在该材料动力特性研究中已得到报道[20],其主要原因为粗粒土、天然黏土等材料在卸载—再加载过程中仅出现塑性变形,而胶结砂砾石料除会发生塑性变形之外,其胶凝剂使该材料骨料颗粒之间存在一定的黏滞性;随着应力水平的增加,月牙形滞回圈形状基本不变,但尺寸逐渐变大,表明应力水平会在一定程度上影响胶结砂砾石料的黏滞性。
为了探究卸载—再加载方式对峰值强度的影响,从图2的试验曲线中提取不同围压下的峰值强度,并结合一次加载试验的峰值强度值[16],绘制出图3。从图3可看出:胶凝掺量为100 kg/m3的胶结砂砾石料峰值强度略高于单调加载的峰值强度;胶结砂砾石料峰值强度与围压的关系曲线为直线,其斜率与截距均略大于一次加载试验的相应斜率,表明卸载—再加载条件下胶结砂砾石料的内摩擦角与黏聚力均有所增加,但内摩擦角的改变较大,其主要原因可能是已发生胶结破损的骨料颗粒在卸载—再加载过程中会比一次加载试验发生更多地错动,试件的摩擦角度得到明显增加;胶结砂砾石料峰值强度与围压的关系可采用经典摩尔库伦准则表达式表示。
回弹模量是胶结砂砾石料三轴卸载—再加载过程中回弹特性的重要量化指标之一。它一般是指卸载—再加载时的轴向应力
和轴向应变 的增量比值, 。 (1) 在本次研究中,虽然胶结砂砾石料在卸载—再加载过程中出现与粗粒土不同的新月形滞回圈,但笔者仍以卸载点与再加载点连线的斜率作为胶结砂砾石料的回弹模量。
图4给出了不同应力水平与围压下胶凝掺量100 kg/m3的胶结砂砾石料回弹模量,从图4可看出:各围压下胶结砂砾石料回弹模量随应力水平的增加略有改变,且变幅不超过10%,参考其他岩土材料的回弹特性研究的报道[9, 11],假定不同应力水平条件下胶结砂砾石料的回弹模量直接取平均值进行分析,结果见图5。从图5可看出,胶结砂砾石料的回弹模量随围压的增加而增大,但增幅减小,这也与堆石料、高聚物堆石料的回弹模量与围压的关系类似[9, 11]。为了定量描述胶结砂砾石料回弹模量与围压的关系,笔者首先尝试采用邓肯-张模型常用的相应表达式,
, (2) 式中
, 为回弹模量参数, 为标准大气压。从图5中的拟合结果可看出,该式能很好地拟合其关系。然而在实际工程中,由于当 时,胶结砂砾石料实际上仍是一个整体,不会松散,直接式(2)计算时,回弹模量为0,这与实际情况不符。为此,笔者认为胶结砂砾石料的回弹模量可借鉴之前提出的初始切线模量公式[16],即 。 (3) 根据上述试验结果,整理出不同围压下应力水平对应的回弹模量平均值Eur与单调加载初始模量Ei 的比值N,并点绘出 N 与围压
的关系,如图6所示。在图6中,不同围压下的N值变化很小,可直接取其平均值,在胶凝砂砾石坝实际工程中,胶凝掺量100 kg/m3的胶结砂砾石料回弹模量一般建议取初始弹性模量的1.5倍。 2.2 体积应变
图7为胶凝掺量100 kg/m3的胶结砂砾石料在不同应力水平下的体积应变曲线,从图7可以看出:在卸载—再加载过程中,胶结砂砾石料加载阶段的体积应变—轴向应变曲线与一次加载相同[16],即先增大后减小,表明胶结砂砾石料在加载条件下发生先剪缩后剪胀现象;当围压为300 kPa时,胶结砂砾石料发生卸载体胀现象,而围压高于600 kPa时,胶结砂砾石料在卸载时主要发生体缩现象,这是由于胶结物填充了颗粒间的孔隙,受围压的作用,破损的颗粒之间更加密实,摩擦力较大,颗粒很难翻越相邻颗粒完成重新排列,从而使试样卸载时更易出现体缩现象。不同围压条件下高聚物堆石料的卸载体胀、体缩机理也是如此。
为了进一步分析胶结砂砾石卸载体缩量随围压或应力水平的变化特征,假定卸载体缩
可为 , (4) 式中,
, 分别对应于某一应力水平下卸载初始点与偏应力卸载至0时的体积应变。 根据上述公式,在不同的围压和应力水平下,卸荷后的体积收缩如图8所示(“-”为卸载体缩,“+”为卸载体胀)。从图8中可以看出,随着围压的增加,胶结砂砾石料卸载体胀逐渐变为卸载体缩,但同一围压下,应力水平的不同仅略微影响卸载时体积改变量。
3. 结论
对胶凝掺量100 kg/m3的胶结砂砾石料进行了3种应力水平下的胶结砂砾石料三轴卸载-再加载试验,系统分析了其卸载再加载力学特性,主要结论如下:
(1)在不同应力水平与围压下的胶结砂砾石料卸载再加载方式可在一定程度上提高其颗粒的内摩擦角,增加峰值强度。
(2)回弹模型随围压的增加明显增大,但受应力水平的影响较小,可直接取不同应力水平条件下的平均值;不同围压对回弹模量与初始模量的比值N影响较小,在实际胶凝砂砾石坝工程中,胶凝掺量100 kg/m3的胶结砂砾石料回弹模量约为初始模量的1.5倍。
(3)随着围压的增加,胶结砂砾石料卸载体胀逐渐变为卸载体缩,但应力水平对卸载体缩量或体胀量的影响较小。
以上结论可为胶凝砂砾石坝大坝或其它加固工程的数值计算提供重要的参考。
-
-
[1] LONDE P, LINO M. Hardfill Dam, The faced symmetrical hardfill dam: a new concept for RCC[J]. International Water Power & Dam Construction, 1992, 44(2): 19-24.
[2] JIA J S, LINO M, JIN F, et al. The cemented material dam: a new, environmentally friendly type of dam[J]. Engineering, 2016(2): 490-497.
[3] 李广信, 武世锋. 土的卸载体缩的试验研究及其机理探讨[J]. 岩土工程学报, 2002, 24(1): 47-50. doi: 10.3321/j.issn:1000-4548.2002.01.010 LI Guang-xin, WU Shi-feng. The experimental study and mechanism study of volumetric contraction after unloading of soil[J]. Chinese Journal of Geotechnial Engineering, 2002, 24(1): 47-50. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.01.010
[4] 李广信, 郭瑞平. 土的卸载体缩的试验研究及与可恢复剪胀[J]. 岩土工程学报, 2000, 22(2): 158-161. LI Guang-xin, GUO Rui-ping. The experimental study of volumetric contraction after unloading of soil and recover dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 158-161. (in Chinese)
[5] 陈愈炯. 土的卸荷弹性模量[J]. 工程勘察, 1988(5): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198805001.htm CHEN Yu-jiong. The unloading elastic modulus of soil[J]. Engineering Investigation, 1988(5): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198805001.htm
[6] 陈开圣, 沙爱民. 压实黄土回弹模量试验研究[J]. 岩土力学, 2010, 31(3): 748-759. doi: 10.3969/j.issn.1000-7598.2010.03.014 CHEN Kai-sheng, SHA Ai-min. The testing research of modulus of resilience of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(3): 748-759. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.03.014
[7] XU Long-fei, WONG Kwai Kwan, FABBRI Antonin, et al. Loading-unloading shear behavior of rammed earth upon varying clay content and relative humidity conditions[J]. Soils and Foundations, 2018, 58: 1001-1015. doi: 10.1016/j.sandf.2018.05.005
[8] 褚福永, 朱俊高, 贾华, 等. 粗粒土卸载—再加载力学特性试验研究[J]. 岩土力学, 2012, 33(4): 1061-1066. doi: 10.3969/j.issn.1000-7598.2012.04.015 CHU Fu-yong, ZHU Jun-gao, JIA Hua, et al. Experimental study of mechanical behaviour of coarse-grained soil in unloading and reloading[J]. Rock and Soil Mechanics, 2012, 33(4): 1061-1066. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.04.015
[9] 朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm ZHU Ju-gao, WANG Yuan-long, JIA Hua, et al. Experimental study on resilience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm
[10] ZHAO Y R, YANG H Q, HUANG L P, et al. Mechanical behavior of intact completely decomposed granite soils along multi-stage loading-unloading path[J]. Engineering Geology, 2019, 260: 1-8.
[11] 杨贵, 孙欣, 王阳阳. 高聚物堆石料回弹特性试验[J]. 岩土力学, 2018, 39(5): 1669-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805016.htm YANG Gui, SUN Xin, WANG Yang-yang. Tests on resilient behaviour of polymer rockfill materials[J]. Rock and Soil Mechanics, 2018, 39(5): 1669-1674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805016.htm
[12] XU Xiang-tian, LI Qiong-lin, LAI Ying, et al. Effect of moisture content on mechanical and damage behavior of frozen loess under triaxial condition along with different confining pressures[J]. Cold Regions Science and Technology, 2019: 157: 110-118.
[13] 傅华, 陈生水, 韩华强, 等. 胶凝砂砾石料静、动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502025.htm FU Hua, CHEN Sheng-shui, HAN Hua-qiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502025.htm
[14] WU M X, DU B, YAO Y C, et al. An experimental study on stress-strain behavior and constitutive model of hardfill materials[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(11): 2015-2024.
[15] YANG J, CAI X, PANG Q, et al. Experimental study on the shear strength of cement sand gravel material[J]. Advances in Materials Science and Engineering, 2018, 6: 1-11.
[16] YANG J, CAI X, GUO X W, et al. Effect of cement content on the deformation properties of cemented sand and gravel material[J]. Applied Sciences-Basel, 2019, 9: 1-16.
[17] 蔡新, 杨杰, 郭兴文, 等. 胶凝砂砾石料弹塑性本构模型研究[J]. 岩土工程学报, 2016, 38(9): 1569-1577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609004.htm CAI Xin, YANG Jie, GUO Xing-wen, et al. Elastoplastic constitutive model for cement-sand-gravel material[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1569-1577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609004.htm
[18] 魏匡民, 陈生水, 李国英, 等. 胶凝粗粒料的弹塑性模型与应用研究[J]. 岩土工程学报, 2019, 41(5): 797-805. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905002.htm WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, et al. Elastoplastic model for cemented coarse-grained materials and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 797-805. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905002.htm
[19] 土工试验规程:SL237—1999[S]. 1999. Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
[20] 黄虎, 黄凯, 张献才, 等. 循环荷载下胶凝砂砾石材料的滞后及阻尼效应[J]. 建筑材料学报, 2018, 21(5): 739-748. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201805008.htm HUANG Hu, HUANG Kai, ZHANG Xian-cai, et al. Hysteresis and damping effect of cemented sand and gravel material under cyclic loading[J]. Journal of Building Materials, 2018, 21(5): 739-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201805008.htm
-
期刊类型引用(3)
1. 刘庆辉,王震,任红磊,闵芷瑞,蔡新. 基于BP神经网络的胶结砂砾石应力-应变关系预测. 水力发电. 2024(02): 30-34+77 . 百度学术
2. 杨海华,夏宇,宋优建,何建新,杨武. 双向振动下高聚物胶凝戈壁土的动力特性试验研究. 世界地震工程. 2024(04): 151-163 . 百度学术
3. 田巍巍,努尔哈斯木·穆哈买提汗,李文涛,李青山. 水泥灌浆胶结砂砾石抗剪特性试验研究. 水利水电科技进展. 2023(06): 60-65 . 百度学术
其他类型引用(4)