• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

CFRP加固地铁车站结构中柱地震损伤评价研究

马超, 王作虎, 路德春, 杜修力

马超, 王作虎, 路德春, 杜修力. CFRP加固地铁车站结构中柱地震损伤评价研究[J]. 岩土工程学报, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
引用本文: 马超, 王作虎, 路德春, 杜修力. CFRP加固地铁车站结构中柱地震损伤评价研究[J]. 岩土工程学报, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
MA Chao, WANG Zuo-hu, LU De-chun, DU Xiu-li. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
Citation: MA Chao, WANG Zuo-hu, LU De-chun, DU Xiu-li. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011

CFRP加固地铁车站结构中柱地震损伤评价研究  English Version

基金项目: 

国家自然科学基金项目 51208294

国家自然科学基金项目 51778026

北京市属高校活动经费项目 X18147

北京建筑大学金字塔人才培养工程 JDYC20200311

详细信息
    作者简介:

    马超(1986—),男,讲师,博士,主要从事岩土力学与城市地下结构防灾减灾等方面的教学与科研工作。E-mail:machao@bucea.edu.cn

    通讯作者:

    路德春, E-mail:dechun@bjut.edu.cn

  • 中图分类号: TU43

Seismic damage evaluation of CFRP-strengthened columns in subway stations

  • 摘要: FRP(纤维增强复合材料)能够在不显著改变钢筋混凝土柱侧向刚度的情况下,改善柱子的侧向变形能力,而地铁车站结构地震反应的强烈程度取决于土-结构相对刚度比,因此采用FRP加固地铁车站结构中柱,能够在不影响车站结构整体地震反应的情况下,减小地震引起的中柱损伤。开展了CFRP(碳纤维增强复合材料)加固混凝土柱的抗震性能试验,分析了CFRP对钢筋混凝土柱侧向刚度和变形能力的影响规律。采用试验结果验证了数值模型的合理性,并研究了不同轴压下CFRP加固柱的侧向变形能力。采用三维非线性时域显式整体分析方法,模拟获得了CFRP加固地铁车站结构的地震反应,分析了地震作用过程中结构中柱的变形行为。基于改进的Park-Ang模型,评价了加固柱与非加固柱的地震损伤程度。研究结果表明,在地震PGA介于0.3g~0.4g时,地铁车站结构下层加固柱在震后处于易修复或可修复状态,而非加固柱处于难修复或不可修复状态。
    Abstract: FRP, fiber reinforced plastics, can be used to improve the lateral deformation capacity of reinforced concrete columns without remarkably changing their lateral stiffness. The intensity of seismic response of subway stations depends on the relative stiffness between surrounding soils and structures. Therefore, when using the FRP-strengthed columns of subway stations, the damage of columns can be decreased, but the seismic response of overall structures will not be influenced. The experimental analysis is conducted to study the lateral stiffness and deformation capacity of reinforced concrete columns strengthened by CFRP, i.e., carbon fiber-reinforced plastics. The test results are used to verify the reasonability of numerical models, then the deformation properties of CFRP-strengthened columns under different axial forces are discussed using the verified models. The 3D nonlinear time-domain explicit integration algorithim is employed to simulate the seismic response of subway stations strengthened by CFPR, and the deformation behaviours of columns during earthquakes are analyzed. The earthquake-induced damages of non-strengthened and CFRP-strengthened columns are evaluated by the improved Park-Ang model. It is found that under the earthquakes with PGA of 0.3g~0.4g, the CFRP-strengthened columns in bottom storey are in the easily repairable or repairable states, but the non-strengthened columns are in the difficultly repairable or irreparable states.
  • 土工离心模型试验技术是一项崭新的土工物理模型技术,通过施加在模型上的离心惯性力使模型的重度变大,从而使模型的应力与原型一致,这样就可以用模型反映、表示原型。离心模型是各类物理模型中相似性最好的模型,在国内外受到广泛重视,试验技术飞速发展与进步,研究内容涉及几乎所有的岩土工程研究领域,已成为岩土工程技术研究中的最主要、最有效、最广泛应用的研究手段[1]

    Biot动力固结方程是土力学的基本方程,包括动力平衡方程和连续方程。从连续方程出发,得到固结与孔隙水压力的扩散问题的时间比尺关系tp/tm=n2[2],这个关系的前提假设是,模型的渗透系数km是原型渗透系数kpn倍,模型与原型的固结系数相等,这一假设存在争议,未得到试验完全证实。

    Pokrovsky & Fyodorov认为离心模型的水力坡降im与原型的水力坡降ip相等,模型的渗透系数km是原型渗透系数kpn倍,得到了tp/tm=n2的时间比尺关系;而Cargill等[3]则认为离心模型的水压力坡降im是原型的水压力坡降ipn倍,模型的渗透系数km与原型渗透系数kp相等,令人奇怪的是,他们利用相互矛盾、相互对立的假定得到了相同的结论。

    其实,Cargill等把达西定律中的“水力梯度(h/L)”用“水压力梯度(p/L)”来代替是错误的,因为水力梯度(无量纲)与水压力梯度(有量纲)并不相同。因而,模型渗透系数km与原型渗透系数kp的关系,成了问题的关键。即土的渗透系数(达西渗透系数)在高重力场下变不变?是否随加速度而增大?

    从不同的研究目的出发,世界各国的离心模型试验专家进行了不懈的努力。Goodings[4]通过试验研究了灰坝的浸润线,Croce等[5]研究了土样的固结问题,Singh等[6]和Khalifa等[7]都研究过土的渗透系数随加速度的变化规律。令人不解的是,Singh等的结果表明,土的渗透系数随加速度而增大,而Khalifa等的结果却表明,在50g以下,土的渗透系数不随加速度变化。Singh等的试验装置不能防止水的蒸发,结果令人怀疑;Khalifa等的试验只进行到50g,也难以说明问题,不能令人信服。Sharma等[8]分析了离心机半径对变水头试验测得的渗透系数的影响。隋海宾等[9]总结了国外离心模型试验中土的渗透相似性研究成果,但没有自己的试验。Anderson等[10]研制了在离心机上进行土的渗透系数试验的装置,可以大大缩短试验时间。

    国内外离心模型试验发展很快,离心模型试验中固结与孔隙水压力扩散问题的时间比尺问题一直未能得到有效的试验验证。固结与孔隙水压力扩散问题的时间比尺关系tp/tm=n2正确与否,归根结底就是高重力场条件下土的渗透特性与普通重力场条件下是否一致?如果不一致,土的渗透特性随离心加速度是怎样变化的?本文通过离心模型渗透试验,研究了土的渗透系数随离心加速度的变化规律,验证离心模型渗透相似理论,澄清固结与孔隙水压力扩散问题的时间比尺关系的一些模糊不清问题,对离心模型试验技术的发展具有十分重要的理论意义和应用价值。

    水在土体孔隙中的渗透采用达西定律描述,

    v=kΔhL=ki
    (1)

    式中:v为渗透速度;k为渗透系数,其物理意义是当水力梯度等于1时的渗透速度;L为渗径长度;Δh为试样两端的水位差;i为水力梯度,它是沿渗透方向单位距离的水头损失,无量纲。

    定义任一模型变量xm与原型变量xp的相似常数:

    ηx=xp/xm
    (2)

    将式(2)代入式(1),可以得到

    ηvv=ηkηiki
    (3)

    达西定律可以描述原型和模型,因此它对原型与模型来说都应当是正确的。只有当所有的η项系数都相等时,式(3)才与原方程式(1)相同,也就是,

    ηv=ηkηi
    (4)

    离心模型试验中,模型的渗透速度是原型的n倍,即ηv=1/n,而水力梯度无量纲,则ηi=1,得到

    ηk=1/n
    (5)

    Muskat[11]、Lambe等[12]分别给出了渗透系数与流体重度的关系式:

    k=Kγμ=Kρgμ
    (6)

    式中:K为土体的内在渗透系数,是颗粒形状、直径和填料的函数;μ为流体的动力黏度;ρ为流体的密度;g为重力加速度。

    由式(6)可以明显看出,渗透系数随土体的内在渗透系数、流体的动力黏度、流体的密度、重力加速度变化,模型和原型土体的内在渗透系数、流体的动力黏度、流体的密度相同,重力加速度为n倍,即,ηK=ημ=ηρ=1,ηg=1/n,因此,可得ηk=1/n

    试验在南京水利科学研究院NHRI400 g·t土工离心机上进行。该机最大半径5.5 m,吊篮平台的尺寸为1100 mm×1100 mm,最大加速度200g,最大负荷2 t,容量400 g·t。为在离心机中进行渗透试验,研制出离心机渗透仪,渗透仪装置由渗透容器、变水头管、水头测量装置等组成(图 1)。渗透容器由金属圆筒(内径100 mm、高100 mm)、透水石、上盖和下盖组成,变水头管由连接段(内径40 mm)和测量段(内径20 mm)组成,水头测量装置由激光位移传感器和浮标组成。

    图  1  离心机渗透仪
    Figure  1.  Permeameter of centrifuge model tests

    试验土样为低液限黏土(CL)、低液限粉土(ML)、粉土质砂(SM)3种,其物理性质指标见表 1

    表  1  土样的物理性质指标
    Table  1.  Physical properties of soils
    土名 低液限黏土 低液限粉土 粉土质砂
    含水率/% 29.0 26.2 20.5
    密度/(g·m-3) 1.94 2.08 2.10
    试样高度/mm 40 36 69
    液限/% 42.2 24.8
    塑性指数 20.7 6.6
    颗粒组成
    /%
    砂粒 12.8 39.0 55.3
    粉粒 44.7 41.6 38.5
    黏粒 42.5 19.4 6.2
    下载: 导出CSV 
    | 显示表格

    将土样制备成饱和泥浆,放入试样筒内,采用预压方法进行固结成型,固结完成后土样的含水率、密度、试样高度见表 1。将安装好的渗透仪装置放置在模型箱内,以控制下水位,从而控制渗透水头。将渗透仪装置和模型箱放入离心机吊篮,接好激光位移传感器,启动离心机到设定加速度,通过位移传感器测试上水位下降过程。每种土样的试验加速度分别1g(常规)、10g、25g、50g、75g、100g、150g,每种工况进行2组平行试验。

    离心惯性加速度场是通过离心机的旋转而产生的,离心机旋转产生的离心惯性加速场是沿旋转中轴形成的一个个圆形的柱面,在每个等半径的圆柱面上,其离心惯性加速场的惯性势是相等的,离心加速度也相同,离心加速度的大小与半径成正比。这样,在模型的不同高度上,所受到的离心惯性力是不同的。那么离心模型中,上、下水位差并不是真正的渗透水头,而必须进行修正。

    图 2所示,任意旋转半径R处的水柱dR,对试样中心产生的渗透压力增量dp可表示为,

    dp=ρwa0R0RdR 
    (7)
    图  2  渗透水头修正示意图
    Figure  2.  Schematic diagram of seepage water head correction

    式中dp为试样中心的渗透压力增量;ρw为水的密度;a0为试样中心的加速度;R0为试样中心的旋转半径;R为任意水柱的旋转半径;dR为任意水柱的高度。

    对式(7)积分,可得土样中心产生的渗透压力为

    p=R2R1ρwa0R0RdR=12ρwa0R0(R22R21)
    (8)

    式中,p为试样中心的渗透压力;R2为下水位的旋转半径;R1为上水位的旋转半径;其他符号意义同前。

    因此,渗透水头为

    Δh=pρwa0=R22R212R0
    (9)

    式中,Δh为试样的渗透水头,其他符号意义同前。

    变水头渗透系数按式(10)计算

    kT=BLA(t2t1)lnΔh1Δh2
    (10)

    式中,kT为水温为T℃时试样的渗透系数;B为测量段变水头管的断面积;L为渗径,即试样高度;A为试样的断面积;t1t2分别为测读水头的起始和终止时间;Δh1,Δh2分别为起始和终止渗透水头。

    标准温度(20℃)下的渗透系数按式(11)计算

    k20=kTηTη20
    (11)

    式中,k20为标准温度时试样的渗透系数;ηT为T℃时水的动力黏滞系数;η20为20℃时水的动力黏滞系数。

    表 2列出了不同加速度下3种土样的渗透系数试验结果,图 3给出了3种土样的渗透系数随加速度的变化,从图中可以看出,3种土样的渗透系数随加速度的增加而线性增大,表明渗透系数与加速度呈正线性关系。把图 3的纵坐标改为ng时渗透系数与1g时渗透系数之比km/kp,如图 4所示,可以看出,km/kp与加速度具有良好的线性变化关系,可表示为

    km/kp=χn
    (12)
    表  2  渗透系数试验结果
    Table  2.  Test results of permeability coefficient (cm/s)
    土名 加速度/g
    1 10 25 50 75 100 150
    低液限黏土 1.21×10-8 1.24×10-8 1.28×10-7 3.58×10-7 6.16×10-7 8.50×10-7 1.40×10-6 1.79×10-6
    1.29×10-8 1.25×10-8 1.14×10-7 2.97×10-7 5.26×10-7 7.57×10-7 1.26×10-6 1.73×10-6
    低液限粉土 1.21×10-7 1.37×10-7 1.21×10-6 2.92×10-6 6.06×10-6 8.48×10-6 1.07×10-5 1.73×10-5
    1.26×10-7 1.18×10-7 1.17×10-6 2.67×10-6 5.77×10-6 7.91×10-6 9.97×10-6 1.52×10-5
    粉土质砂 1.32×10-6 1.18×10-6 1.29×10-5 2.99×10-5 5.99×10-5 9.44×10-5 1.22×10-4 1.85×10-4
    1.50×10-6 1.09×10-6 1.13×10-5 3.10×10-5 6.16×10-5 9.81×10-5 1.26×10-4 1.79×10-4
    下载: 导出CSV 
    | 显示表格
    图  3  渗透系数随加速度的变化关系
    Figure  3.  Variation of permeability coefficient with acceleration
    图  4  km/kp随加速度的变化关系
    Figure  4.  Relationship between km/kp and acceleration

    式中,χ为比例系数。试验数据拟合得出,3种土样的χ分别0.984,0.937,0.992。除去试验仪器以及固结等因素的影响,比例系数χ≅1。因此,试验证明了离心模型试验渗透系数比尺为ηk=1/n。Singh等[6]利用小离心机变水头试验,也得出了类似的试验结果。

    进行渗透试验时,渗透水头随时间的变化直接反映了试样的渗透稳定情况,图 5给出了不同加速度条件下3种土样的渗透水头过程线。试验结果表明,3种土样的渗透水头随时间的延长而逐渐下降,且下降速率基本一致,说明试样的渗透稳定。下降速率与离心机加速度和土性有关,加速度越大,下降速率越大,土样黏粒含量越大,下降速率越慢。

    图  5  不同加速度下渗透水头随时间的变化
    Figure  5.  Variation of seepage water head with time under different accelerations

    图 6给出了3种土样的渗透速度随加速度与水力梯度乘积的关系曲线,从图中可以看出,3种土样的渗透速度随加速度与水力梯度乘积的增加而线性增大,且线性关系相当好,增长速率与试样的黏粒含量有关,试样黏粒含量越大,增长速率越大,增长速率即为1g条件下试样的渗透系数。表 3列出了3种土样渗透试验最大加速度与水力梯度乘积,表明在这个范围内,离心模型试验渗透符合达西定律,试样黏粒含量越大,加速度与水力梯度乘积也越大。

    图  6  渗透速度随加速度与水力梯度乘积的变化
    Figure  6.  Variation of seepage velocity with product of acceleration and hydraulic gradient
    表  3  3种土样渗透试验最大加速度与水力梯度乘积
    Table  3.  Products of maximum acceleration and hydraulic gradients of three soil samples in permeability tests
    土名 d10/mm k/(cm⋅s-1) v/(cm⋅s-1) 试验最大加速度×水力梯度
    低液限黏土 0.0014 1.22×10-8 4.81×10-5 4033
    低液限粉土 0.0021 1.15×10-7 3.50×10-4 3037
    粉土质砂 0.0112 1.24×10-6 8.14×10-4 661
    下载: 导出CSV 
    | 显示表格

    离心模型渗透试验结果表明,渗透系数随加速度的增加而线性增大,离心模型试验渗透符合达西定律,模型的渗透系数与原型渗透系数之比km/kp随加速度成比例线性增大,比例系数≈1,从而验证了离心模型试验渗透系数比尺为ηk=1/n。虽然国外也得出了类似的试验结果,但我们试验的渗透水头比他们的大,土样类型也多。研究成果对离心模型试验具有重大理论和应用价值。

  • 图  1   混凝土柱尺寸与配筋

    Figure  1.   Sketch of columns and rebars

    图  2   荷载条件及加载机制

    Figure  2.   Boundary and loading conditions

    图  3   试验与模拟获得的荷载-位移曲线

    Figure  3.   Comparison of load-deformation curves obtained from tests and simulations

    图  4   混凝土柱有限元模型

    Figure  4.   FEM model for concrete columns

    图  5   钢筋反复加载应力-应变曲线

    Figure  5.   Stress-strain curves of steel under cyclic loading

    图  6   车站结构详细尺寸与配筋

    Figure  6.   Sketch of subway station and rebars

    图  7   车站与土体有限元模型

    Figure  7.   FEM model for subway station and surrounding soils

    图  8   车站中柱荷载-位移曲线

    Figure  8.   Load-deformation curves of columns

    图  9   不同轴压下CFRP对柱变形能力的提高程度

    Figure  9.   Increase ratio of deformation property of columns under different axial stresses

    图  10   地震动加速度时程

    Figure  10.   Accelerations of applied ground motions

    图  11   中柱变形时程曲线(PGA=0.3g

    Figure  11.   Time histories of deformation of columns (PGA=0.3g)

    图  12   结构中柱等效塑性应变云图

    Figure  12.   Nephograms of equivalent plastic strain in columns

    图  13   结构中柱损伤因子

    Figure  13.   Damage factors of columns

    表  1   地层信息及相关参数

    Table  1   Description of strata and corresponding material parameters

    土层剖面岩土类别厚度/m重度/(kN·m-3)ϕ/(°)杨氏模量/MPa泊松比ν黏聚力/kPa
    ①填土117.0252160.3520
    ②粉质黏土11018.3301990.2820
    ③粉质黏土21417.4252760.3019
    ④粉质黏土3318.8323660.2520
    ⑤细砂619.0253850.3019
    ⑥碎石1621.0306730.3020
    下载: 导出CSV

    表  2   中柱在地震作用时的变形

    Table  2   Deformations of columns during earthquakes

    地震动幅值非加固CFRP加固
    上层柱下层柱上层柱下层柱
    δm/mmE/kJδm/mmE/kJδm/mmE/kJδm/mmE/kJ
    阪神0.2g6.400.7011.900.806.400.9011.900.70
    0.3g13.572.7825.605.0313.543.2125.306.26
    0.4g22.507.4047.3016.3022.607.7046.9017.50
    集集0.2g8.601.2415.511.588.581.0715.581.33
    0.3g15.163.7927.317.1814.914.0627.486.30
    0.4g19.588.2635.1612.7219.188.4835.2811.96
    熊本0.2g5.070.409.460.355.100.339.490.20
    0.3g8.631.0815.941.348.630.9216.041.34
    0.4g11.962.9822.416.1611.822.8322.586.15
    人工波0.2g5.090.288.960.265.030.348.900.35
    0.3g7.840.8114.071.177.810.9413.961.46
    0.4g10.161.8218.223.2710.121.8818.103.57
    汶川0.2g3.630.226.010.163.650.216.010.28
    0.3g6.290.6310.520.736.340.5210.180.66
    0.4g9.331.3514.631.829.371.0714.741.62
    下载: 导出CSV
  • [1]

    MA C, LU D C, DU X L, et al. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 265-280. doi: 10.1016/j.soildyn.2019.01.017

    [2] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    [3]

    AN X H, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin Earthquake[J]. Cement and Concrete Composites, 1997, 19: 241-257. doi: 10.1016/S0958-9465(97)00014-0

    [4] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. doi: 10.3969/j.issn.1000-7598.2008.01.046

    ZHUANG Hai-yang, CHENG Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damages of Daikai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.046

    [5] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    [6] 地下结构抗震设计标准:GB/T 51336—2018[S]. 2019.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. 2019. (in Chinese)

    [7]

    MIKAMI A, KONAGAI K, SAWADA T. Stiffness design of isolation rubber for center columns of tunnel[J]. Doboku Gakkai Ronbunshu, 2001, 682: 415-420. (in Japanese)

    [8] 还毅, 方秦, 陈力, 等. 强震作用下地铁车站结构损伤破坏的三维非线性动力分析[J]. 北京工业大学学报, 2011, 37(6): 852-862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201106008.htm

    HUAN Yi, FANG Qin, CHEN Li, et al. 3D Nonlinear damage analysis of metro-station structures under strong seismic loading[J]. Journal of Beijing University of Technology, 2011, 37(6): 852-862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201106008.htm

    [9]

    CHEN Zhi-yi, ZHOU Yu. Seismic performance of framed underground structures with self-centering energy-dissipation column base[J]. Advances in Structural Engineering, 2019, 22(13): 2809-2822. doi: 10.1177/1369433219852043

    [10]

    MA Chao, LU De-chun, DU Xiu-li. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74: 1-9. doi: 10.1016/j.tust.2018.01.007

    [11]

    XU Zi-gang, DU Xiu-li, XU Cheng-shun, et al. Numerical analyses of seismic performance of underground and aboveground structures with friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105967. doi: 10.1016/j.soildyn.2019.105967

    [12]

    LU De-chun, WU Chun-yu, MA Chao, et al. A novel segmental cored column for upgrading the seismic performance of underground frame structures[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106011. doi: 10.1016/j.soildyn.2019.106011

    [13] 路德春, 李强, 杜修力, 等. 基于失效模式控制的地铁车站结构抗震性能研究[J]. 岩土工程学报, 2019, 38(8): 1400-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908004.htm

    LU De-chun, LI Qiang, DU Xiu-li, et al. Seismic performance of subway station based on failure model control[J]. Chinese Journal of Geotechnical Engineering, 2019, 38(8): 1400-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908004.htm

    [14]

    HOLLAWAY L C, TENG J G. Strengthening and Rehabilitation of Civil Infrastructures Using Fibre- Reinforced Polymer (FRP) Composites[M]. UK: Woodhead Publishing Ltd, 2008.

    [15] 禹海涛, 张正伟. 地下结构抗震设计和分析的反应剪力法[J]. 结构工程师, 2018, 34(2): 134-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201802019.htm

    YU Hai-tao, ZHANG Zheng-wei. Response shear stress method for seismic design and analysis of underground structures[J]. Structural Engineers, 2018, 34(2): 134-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201802019.htm

    [16] 庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901018.htm

    ZHUANG Hai-yang, REN Jia-wei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901018.htm

    [17] 董振华, 杜修力, 韩强. FRP加固钢筋混凝土墩柱抗震性能研究综述[J]. 建筑科学与工程学报, 2013, 30(2): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201302010.htm

    DONG Zhen-hua, DU Xiu-li, HAN Qiang. Review of research on seismic performance of RC columns strengthened with FRP[J]. Journal of Architecture and Civil Engineering, 2013, 30(2): 55-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201302010.htm

    [18] 混凝土结构设计规范:GB—50010 2010[S]. 2010.

    Code for Design of Concrete Structures: GB—50010 2010[S]. 2010. (in Chinese)

    [19]

    WILLIAMS M S, SEXSMITH R G. Seismic damage indices for concrete structures: a state-of-art review[J]. Earthquake Spectra, 1995, 11(3): 320-349.

    [20]

    HINDI R A, SEXSMITH R G. Inelastic damage analysis of reinforced concrete bridge columns based on degraded monotonic energy[J]. Journal of Bridge Engineering, 2004, 9(4): 326-332.

图(13)  /  表(2)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  17
  • PDF下载量:  948
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-11-30

目录

/

返回文章
返回