• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究

翟五洲, 翟一欣, 张东明, 吴惠明, 黄宏伟

翟五洲, 翟一欣, 张东明, 吴惠明, 黄宏伟. 盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究[J]. 岩土工程学报, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059
引用本文: 翟五洲, 翟一欣, 张东明, 吴惠明, 黄宏伟. 盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究[J]. 岩土工程学报, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059
ZHAI Wu-zhou, ZHAI Yi-xin, ZHANG Dong-ming, WU Hui-ming, HUANG Hong-wei. Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059
Citation: ZHAI Wu-zhou, ZHAI Yi-xin, ZHANG Dong-ming, WU Hui-ming, HUANG Hong-wei. Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059

盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究  English Version

基金项目: 上海市科学技术委员会科研计划项目(17DZ1204205)
详细信息
    作者简介:

    翟五洲(1993— ),男,博士研究生,主要从事盾构隧道加固及鲁棒性设计方面的研究。E-mail: zhaiwuzhou@tongji.edu.cn。

Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings

  • 摘要: 盾构隧道环缝相邻管片之间的错台变形,加剧了运营隧道结构所面临的风险。采用外置钢板对已经发生错台变形的环缝处相邻管片进行加固是一种可取的错台变形控制措施。采用有限元数值模拟的方法,建立了盾构隧道管片环缝钢板加固的三维数值分析模型,在此基础上设计并开展了钢板加固管片环缝数值模拟试验。根据数值模拟试验结果,首先分析了外荷载作用下管片接缝错台变形的发展规律,通过螺栓与管片内的应力分布及发展模式解释现象发生的原因;然后,通过对比未加固与钢板加固接缝管片错台变形随荷载增大的发展情况,对该加固方法对错台变形的控制效果进行量化讨论;最后,分析了当接缝发生错台变形时钢板与管片间连接界面的应力分布规律,揭示了加固钢板与管片之间的传力机制,据此对实际盾构隧道加固工程提出指导性建议。
    Abstract: The safety of operated shield-driven tunnels is threatened by the risk comes from the existing displacement between the adjacent segmental linings at the position of circumferential joints. The additional steel plate strengthening has shown as a probably effective way to improve the performance of the joints of displaced segments. The finite element method (FEM) is adopted to simulate the segment joints strengthened by steel plate. A 3-dimensional FE model containing two segments connected by a curved bolt is first established. Then a numerical test is designed and conducted to demonstrate the effectiveness of the proposed steel plate strengthening method. Based on the simulated results, the relationship between joint displacement and external load is illustrated, and the tendency of which is explained by the stress analysis of the contacted elements within bolts and segments. Next, by comparing the displacement increase between joints with and without steel plate reinforcement, the strengthening efficiency of steel plate on the displaced segment joint is discussed. Finally, the interaction mechanism is investigated by analyzing the stress distribution at the interface between the steel plate and the linings. After all, some suggestions are offered for the real world engineering practice.
  • [1] 王如路. 上海软土地铁隧道变形影响因素及变形特征分析[J]. 隧道与轨道交通, 2009(1): 1-6.
    (WANG Ru-lu.Factors influencing deformation of Shanghai soft soil metro tunnel and deformation analysis[J]. Underground Engineering and Tunnels, 2009(1): 1-6. (in Chinese))
    [2] 王如路, 张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报, 2013, 35(6): 1092-1101.
    (WANG Ru-lu, ZHANG Dong-mei.Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101. (in Chinese))
    [3] 张冬梅, 邹伟彪, 闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36(12): 2203-2212.
    (ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya.Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. (in Chinese) )
    [4] 刘梓圣, 张冬梅. 软土盾构隧道芳纶布加固机理和效果研究[J]. 现代隧道技术, 2014, 51(5): 155-160.
    (LIU Zi-sheng, ZHANG Dong-mei.The mechanism and effects of afrp reinforcement for a shield tunnel in soft soil[J]. Modern Tunnelling Technology, 2014, 51(5): 155-160. (in Chinese))
    [5] 柳献, 张晨光, 张宸, 等. FRP加固盾构隧道纵缝接头试验研究[J]. 铁道科学与工程学报, 2016, 13(2): 316-324.
    (LIU Xian, ZHANG Chen-guang, ZHANG Chen, et al.Experimental study on the longitudinal joint in shield tunnel reinforced with FRP material[J]. Journal of Railway Science and Engineering, 2016, 13(2): 316-324. (in Chinese))
    [6] 柳献, 唐敏, 鲁亮, 等. 内张钢圈加固盾构隧道结构承载能力的试验研究——整环加固法[J]. 岩石力学与工程学报, 2013, 32(11): 2300-2306.
    (LIU Xian, TANG Min, LU Liang, et al.Experimental study of ultimate bearing capacity of shield tunnel reinforced by full-ring steel plate[J]. Chinese Journal of Geotechnical Engineering, 2013, 32(11): 2300-2306. (in Chinese))
    [7] ZHANG Dong-ming, ZHAI Wu-zhou, et al.Robust retrofitting design for rehabilitation of segmental tunnel linings: Using the example of steel plates[J]. Tunnelling and Underground Space Technology, 2019, 83: 231-242.
    [8] Simplified nonlinear simulation of shield tunnel lining reinforced by epoxy bonded steel plates[J]. Tunnelling and Underground Space Technology, 2016, 51: 362-371.
    [9] 石太伟. 某地铁盾构隧道破损机理分析及加固设计[J]. 铁道标准设计, 2014(6): 116-119.
    (SHI Tai-wei.Damage mechanism analysis and strengthening design for a metro shield tunnel[J]. Railway Standard Design, 2014, 58(6): 116-128. (in Chinese))
    [10] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043.
    (SHAO Hua, HUANG Hong-wei, ZHANG Dong-ming, et al.Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016; 38(6): 1036-1043. (in Chinese))
    [11] KIRIYAMA K, KAKIZAKI M, et al.Structure and construction examples of tunnel reinforcement method using thin steel panels[R]. Nippon Steel Technical Report, 2005, 92: 45-50.
    [12] CHANG C T, WANG M J, et al.Repair of displaced shield tunnel of the Taipei rapid transit system[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(3): 167-173.
    [13] JONES R, SWAMY R N, et al.Plate separation and anchorage of reinforced concrete beams strengthened by epoxy-bonded steel plates[J]. Structural Engineer, 1988, 66(5).
  • 期刊类型引用(17)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 夏虎. 砂土地基液化沉降的数值模拟探究. 四川建材. 2024(10): 77-79 . 百度学术
    3. 黄超天,王天齐,董玉翔,沈才华,曾志康. 级配砂不同含量的软土变形特性及其本构方程. 水道港口. 2024(05): 772-781 . 百度学术
    4. 张雪锋,李忠,陈诚,徐梓斐. 基于Origin的土工颗粒分析试验数据处理. 黄河水利职业技术学院学报. 2023(01): 42-45+54 . 百度学术
    5. 李涛,赵洪扬,翁勃航,黄晓冀,张钟毓. 细颗粒形状和含量对钙质混合砂强度的影响试验研究. 岩土工程学报. 2023(07): 1517-1525 . 本站查看
    6. 张武东,柴安俊,张建,李伟. 含细粒风积沙压实特性研究. 四川建材. 2023(10): 21-22+48 . 百度学术
    7. 尹志勇,许鸣珠,景立平,高攀,韩雪,杨光. 橡胶-砂混合土动力学研究进展. 自然灾害学报. 2023(05): 12-20 . 百度学术
    8. 李方圆,董林,夏坤,李燕,王晓磊. 细粒含量对砂土液化势影响探讨. 地震工程与工程振动. 2022(02): 244-251 . 百度学术
    9. 朱会强,张明,薛茹,郭军辉,贾继龙. 中美抗震规范中地层液化判定标准对比. 勘察科学技术. 2022(01): 1-6 . 百度学术
    10. 李富春,张璟泓,周红星,王婧,梁小丛. 粉粒及黏粒含量对强夯加固粉细砂土层效果的影响. 人民长江. 2022(08): 186-191 . 百度学术
    11. 张巍巍,袁延召,王彦军,李小龙,王攀,费召阳. 初始泥浆对吹填土抗液化强度CRR的影响. 科学技术与工程. 2022(26): 11310-11315 . 百度学术
    12. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
    13. 朱成浩,崔高航. 基于非对称滞回的不同细粒含量融化粉砂本构模型. 科学技术与工程. 2021(10): 4167-4174 . 百度学术
    14. 许锐,孔亮,袁庆盟,赵亚鹏,刘佳棋. 泥质粉砂型能源土的三轴剪切试验研究. 宁夏大学学报(自然科学版). 2021(02): 141-147 . 百度学术
    15. 陈晓飞,吴建翔,李园. 应力路径对饱和砂土动力特性影响的试验研究. 工程技术研究. 2021(12): 6-8 . 百度学术
    16. 李雪,曾毓燕,郁飞,施刚. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报. 2021(06): 998-1010 . 百度学术
    17. 胡再强,郭婧,梁志超,王凯,冯哲,陈振鹏. 黏粒含量对细粒尾矿物理力学性质的影响. 岩土工程学报. 2020(S1): 16-21 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  294
  • HTML全文浏览量:  7
  • PDF下载量:  161
  • 被引次数: 31
出版历程
  • 收稿日期:  2019-04-27
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回