Stress and displacement of surrounding rock of loess tunnels based on joint strength
-
摘要: 隧道围岩应力及位移计算问题是隧道工程界中传统研究课题之一,但黄土抗拉强度在黄土隧道围岩应力及位移计算中存在的影响需要进行合理性评价。基于建立的可综合考虑黄土抗拉和抗剪特性的联合强度,开展了极限应力平衡分析,重新推导了强度破坏曲线的主应力表达式;然后重新确定了轴对称圆形隧道条件下黄土围岩塑性区半径;最后得到了隧道周边黄土围岩位移表达式。研究结果表明:在围岩塑性区应力计算与比较中,基于联合强度确定的围岩塑性区应力小于基于传统的Mohr-Coulomb理论确定的围岩塑性区应力,而塑性区半径和隧道周边围岩位移相对较大;基于拉强度建立的联合强度理论克服了Mohr-Coulomb理论高估黄土抗拉强度的缺陷,可以合理评价黄土隧道围岩应力及位移。Abstract: The stress and displacement of surrounding rock of tunnels are one of the traditional research subjects in the tunnel engineering. However the impact of tensile strength on stress and displacement of the surrounding rock of structured loess tunnels needs to be evaluated reasonably. Based on the theory of joint strength considering the tensile and shear properties of loess simultaneously, the principal stress expression for the strength failure curve is re-determined to analyze the ultimate stress equilibrium. Then, the radius of the plastic zone of the surrounding rock of loess under the axisymmetric circular tunnel is re-determined. Finally, the expression of the displacement for the surrounding rock around the tunnel is obtained. The results show that the plastic stress in the surrounding rock determined by the joint strength theory is smaller than that determined by the traditional Mohr-Coulomb theory, and the radius of the plastic zone and the displacement of the surrounding rock around the tunnel are relatively large. The joint strength theory based on tensile strength overcomes the defect of Mohr-Coulomb theory overestimating the tensile strength of loess, and it can reasonably evaluate stress and displacement of the surrounding rock.
-
Keywords:
- structured loess /
- tensile strength /
- shear strength /
- joint strength formula /
- stress /
- displacement /
- surrounding rock
-
[1] 赵彭年. 松散介质力学[M]. 北京: 地震出版社.
(ZHAO Peng-nian.Mechanics of loose medium[M]. Beijing. Earthquake Press. (in Chinese))[2] NOVA R, GABRIELI L.Soil mechanics[M]. New York: Wiley-Iste, 2010. [3] 罗固源. 岩石力学[M]. 重庆: 重庆大学出版社.
(LUO Gu-yuan.Rock mechanics[M]. Chongqing: University Press. (in Chinese))[4] 侯公羽, 牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. 岩土力学, 2009, 30(6): 1555-1562.
(HOU Gong-yu, NIU Xiao-song, et al.Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. Rock and Soil Mechanics, 2009, 30(6): 1555-1562. (in Chinese))[5] 张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析[J]. 煤炭学报, 2010, 35(3): 381-386.
(ZHANG Qiang, WANG Hong-ying, WANG Shui-lin, et al.Deterioration elsto-plastic analysis of cracked surrounding rocks based on unified strength theory[J]. Journal of China Coal Society, 2010, 35(3): 381-386. (in Chinese))[6] 曾开华, 鞠海燕, 盛国君, 等. 巷道围岩弹塑性解析解及工程应用[J]. 煤炭学报, 2011, 36(5): 752-755.
(ZENG Kai-hua, JU Hai-yan, SHENG Guo-jun, et al.Elastic-plastic analytical solutions for surrounding rocks of tunnels and its engineering applications[J]. Journal of China Coal Society, 2011, 36(5): 752-755. (in Chinese))[7] 张常光, 张庆贺, 赵均海. 考虑应变软化、剪胀和渗流的水工隧道解析解[J]. 岩土工程学报, 2009, 31(12): 1941-1946.
(ZHANG Chang-guang, ZHANG Qing-he, ZHAO Jun-hai.Analytical solutions of hydraulic tunnels considering strain softening, shear dilation and seepage[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1941-1946. (in Chinese))[8] 张小波, 赵光明, 孟祥瑞. 基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析. 煤炭学报, 2013, 38(增刊1): 30-37.
(ZHANG Xiao-bo, ZHAO Guang-ming, MENG Xiang-rui.Elastoplastic analysis of surrounding rock on circular roadway based on Drucker-Prager criterion[J]. Journal of China Coal Society, 2013, 38(S1): 30-37. (in Chinese))[9] 冯强, 范金成, 张强, 等. 基于Mohr-Coulomb准则的球形洞室围岩应变软化弹塑性分析[J]. 煤炭学报, 2014, 39(5): 836-840.
(FENG Qiang, FAN Jin-cheng, ZHANG Qiang, et al.Elastoplastic analysis of spherical cavity in strain-softening rock masses based on Mohr-Coulomb criterion[J]. Journal of China Coal Society, 2014, 39(5): 836-840. (in Chinese))[10] 李荣建, 刘军定, 郑文, 等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报, 2013, 35(增刊2): 247-252.
(LI Rong-jian, LIU Jun-ding, ZHENG Wen, et al.A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252. (in Chinese)) -
期刊类型引用(17)
1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术
其他类型引用(17)