Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand
-
摘要: 为了研究黏粒、粉粒与砂粒共存的土体中,黏粒和粉粒对砂土抗液化的影响规律,通过静力与动力三轴仪试验系统,对细粒(黏粒和粉粒)含量FC为5%和10%、三种不同细粒配比的试样进行静力与动力三轴试验。试验结果表明:相同细粒含量、不同细粒配比试样的抗液化强度不同;当细粒含量不同时,随着细粒中黏粒或粉粒含量的单调变化,试样所表现出的抗液化规律不同;FC=10%试样的抗液化强度整体高于FC=5%试样的相应强度。随着细粒含量及细粒中黏粒与粉粒相对含量的变化,黏粒与粉粒对砂粒的填充、黏结与骨架作用所占比例不同。Abstract: In order to study the influence rules of clay and silt on the liquefaction resistance of sand in the mixture of clay, silt and sand, based on the static and dynamic triaxial tests, the sand specimens with two different fines (clay and silt) contents (FCs), 5% and 10%, and three different fines proportions are investigated by the static and dynamic triaxial system. The test results show that the liquefaction resistance of specimens with the same fines content and different fines proportions are different. When the fines content of the specimens is different, the laws of liquefaction resistance are different with the monotonous change of the clay or silt content in the fines. The liquefaction resistance of the specimens with FC of 10% are higher than that of the specimens with FC of 5%. The clay and silt play roles of filling, bonding and skeleton effects on the sand particles. And with the change of clay and silt content in the fines, the proportion of these three roles is different under different fines contents.
-
Keywords:
- mixed soil /
- fines content /
- fines proportion /
- clay content /
- silt content /
- liquefaction resistance
-
[1] YANG J, WEI L M.Collapse of loose sand with the addition of fines: the role of particle shape[J]. Géotechnique, 2012, 62(12): 1111-1125. [2] XENAKI V C, ATHANASOPOULOS G A.Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23: 183-194. [3] 董林, 王兰民, 夏坤, 等. 含细粒砂性土标贯液化判别方法改进研究[J]. 岩土工程学报, 2015, 37(12): 2320-2325.
(DONG Lin, WANG Lan-min1, XIA Kun, et al. Improvement of SPT-based liquefaction discrimination methods for fines-containing sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2320-2325. (in Chinese))[4] CARRERA A, COOP M R, LANCELLOTTA R.Influence of grading on the mechanical behavior of stave tailings[J]. Géotechnique, 2011, 61(11): 935-946. [5] THEVANAYAGAM S, MOHAN S.Intergranular state variables and stress-strain behaviour of silty sands[J]. Géotechnique, 2000, 50(1): 1-23. [6] SL237—1999土工试验规程[S]. 1999.
(SL237—1999 Specification of Soil Test[S]. 1999. (in Chinese)) -
期刊类型引用(17)
1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
2. 夏虎. 砂土地基液化沉降的数值模拟探究. 四川建材. 2024(10): 77-79 . 百度学术
3. 黄超天,王天齐,董玉翔,沈才华,曾志康. 级配砂不同含量的软土变形特性及其本构方程. 水道港口. 2024(05): 772-781 . 百度学术
4. 张雪锋,李忠,陈诚,徐梓斐. 基于Origin的土工颗粒分析试验数据处理. 黄河水利职业技术学院学报. 2023(01): 42-45+54 . 百度学术
5. 李涛,赵洪扬,翁勃航,黄晓冀,张钟毓. 细颗粒形状和含量对钙质混合砂强度的影响试验研究. 岩土工程学报. 2023(07): 1517-1525 . 本站查看
6. 张武东,柴安俊,张建,李伟. 含细粒风积沙压实特性研究. 四川建材. 2023(10): 21-22+48 . 百度学术
7. 尹志勇,许鸣珠,景立平,高攀,韩雪,杨光. 橡胶-砂混合土动力学研究进展. 自然灾害学报. 2023(05): 12-20 . 百度学术
8. 李方圆,董林,夏坤,李燕,王晓磊. 细粒含量对砂土液化势影响探讨. 地震工程与工程振动. 2022(02): 244-251 . 百度学术
9. 朱会强,张明,薛茹,郭军辉,贾继龙. 中美抗震规范中地层液化判定标准对比. 勘察科学技术. 2022(01): 1-6 . 百度学术
10. 李富春,张璟泓,周红星,王婧,梁小丛. 粉粒及黏粒含量对强夯加固粉细砂土层效果的影响. 人民长江. 2022(08): 186-191 . 百度学术
11. 张巍巍,袁延召,王彦军,李小龙,王攀,费召阳. 初始泥浆对吹填土抗液化强度CRR的影响. 科学技术与工程. 2022(26): 11310-11315 . 百度学术
12. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
13. 朱成浩,崔高航. 基于非对称滞回的不同细粒含量融化粉砂本构模型. 科学技术与工程. 2021(10): 4167-4174 . 百度学术
14. 许锐,孔亮,袁庆盟,赵亚鹏,刘佳棋. 泥质粉砂型能源土的三轴剪切试验研究. 宁夏大学学报(自然科学版). 2021(02): 141-147 . 百度学术
15. 陈晓飞,吴建翔,李园. 应力路径对饱和砂土动力特性影响的试验研究. 工程技术研究. 2021(12): 6-8 . 百度学术
16. 李雪,曾毓燕,郁飞,施刚. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报. 2021(06): 998-1010 . 百度学术
17. 胡再强,郭婧,梁志超,王凯,冯哲,陈振鹏. 黏粒含量对细粒尾矿物理力学性质的影响. 岩土工程学报. 2020(S1): 16-21 . 本站查看
其他类型引用(14)