Influences of stress around enlarged base to uplift capacity of deep belled piles in sand
-
摘要: 采用极限平衡法计算深埋扩底抗拔桩的承载力,需要确定破坏面的形状参数和应力条件。针对已有模型试验的研究结果,结合不同桩长扩底抗拔桩统一破坏模式,对上述问题进行了初步探讨。基于应力莫尔圆研究认为,仅考虑自重应力条件得到的破坏面法向应力明显小于扩底附近的实际破坏面应力条件,导致破坏面影响高度计算结果偏大。基于模型试验的试验结果,对扩底应力的增强系数进行了反算,该值在1.3到2.7之间,比被动土压力系数3.4要小,对扩底角度变化不敏感。只是初步的机理探讨,考虑到深埋扩底桩的埋深影响,该问题值得进一步深入研究。Abstract: It is necessary to determine the shape parameters of the failure surface and stress conditions of soil when the limit equilibrium method is adopted to calculate the bearing uplift capacity of a deep belled pile. Based on the published model test results, a preliminary discussion is given on the above problems with a unified failure mode for belled piles with short or long pile lengths. According to the concept of Mohr stress circle, if only the self-weight is considered, the normal stress of the failure surface is obviously less than the actual one around the enlarged base and leads to a larger influence height. Based on the model test results, the stress coefficient on the failure surface is back calculated, and it is found that the value of coefficient is in the range of 1.3 to 2.7, which is insensitive to the base angle. The effect of embedment depth on the stress coefficient is not considered, which needs further studies.
-
[1] MEYERHOF G G, ADAMS J I.The ultimate uplift capacity of foundations[J]. Canadian Geotechnical Journal, 1968, 5(4): 225-244. [2] ILAMPARUTHI K, MUTHUKRISHNAIAH K.Anchors in sand bed: delineation of rupture surface[J]. Ocean Engineering, 1999, 26: 1249-1273. [3] GHALY A, HANNA A, HANNA M.Uplift behavior of screw anchors in sand I: dry sand[J]. Journal of Geotechnical Engineering, 1991, 117(5): 773-793. [4] 郦建俊, 黄茂松, 王卫东, 等. 软土地基中扩底抗拔中长桩的极限承载力分[J]. 岩土力学, 2009, 30(9): 2643-2650.
(LI Jian-jun, HUANG Mao-song, WANG Wei-dong, et al.Analysis on uplift capacity of long enlarged-base pile in soft soil ground[J]. Rock and Soil Mechanics, 2009, 30(9): 2643-2650. (in Chinese))[5] 黄茂松, 王向军, 吴江斌, 等. 不同桩长扩底抗拔桩极限承载力的统一计算模式[J]. 岩土工程学报, 2011, 33(1): 63-69.
(HUANG Mao-song, WANG Xiang-jun, WU Jiang-bin, et al.A unified approach to estimating ultimate bearing capacity of uplift pile with enlarged base[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 63-69. (in Chinese))[6] CHATTOPADHYAY B C, PISE P J.Uplift capacity of piles in sand[J]. Journal of Geotechnical Engineering, 1986, 112(9): 888-904. [7] TURNER E.Uplift resistance of transmission tower footing[J]. Journal of the Power Division, ASCE, 1962, 88(2): 17-34. [8] 凌巧龙. 异形抗拔桩承载特性的模型试验与计算分析[D]. 上海: 同济大学, 2014.
(LING Qiao-long, Model test and calculation analysis of bearing characteristics of special- shaped uplifting pile[D]. Shanghai: Tongji University, 2014. (in Chinese))[9] HARRIS D E, MADABHUSHI G S P. Uplift capacity of an under-reamed pile foundation[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2015, 168(6): 526-538. [10] ILAMPARUTHI K, DICKIN E Z, MUTHUKRISHNAIAH K.Experimental investigation of the uplift behavior of circular plate anchors embedded in sand[J]. Canadian Geotechnical Journal, 2002, 39(3): 648-664. -
期刊类型引用(29)
1. 马乐,李云,陈晨文. 上软下硬地层CSM整体式止水帷幕施工关键技术. 施工技术(中英文). 2024(11): 97-102 . 百度学术
2. 陈伟. 复杂富水地层地铁深大基坑渗漏治理技术研究. 施工技术(中英文). 2024(13): 109-114 . 百度学术
3. 孙立光,朱颖,时刚,王瑜,刘攀,郜新军,朱超杰. 饱和地基中劲芯水泥土墙隔振的二维BEM-FEM耦合分析. 世界地震工程. 2024(04): 164-178 . 百度学术
4. 任路,秦超,向虎,杨天成,李荣华. 武汉某高层建筑深基坑设计与施工. 施工技术(中英文). 2023(01): 119-124 . 百度学术
5. 代兴云,应卫超,孙海明. 深基坑承压水组合式处理措施的研究及应用. 城市道桥与防洪. 2023(01): 178-182+23 . 百度学术
6. 刘树佳. 上海地区特深圆形竖井开挖承压水控制技术及效果. 水资源与水工程学报. 2023(01): 127-134 . 百度学术
7. 魏斌,刘长斌,康建国,刘畅,杨宇航. 富水软土地区超深基坑CSM施工技术研究. 建筑施工. 2023(01): 18-21 . 百度学术
8. 刘鹭. 双轮铣深层搅拌工法在复杂城市地下空间开发的应用研究. 福建建设科技. 2023(03): 41-44 . 百度学术
9. 李成巍,李伟,梁志荣. 紧临越江隧道软土地层深大基坑工程设计与实践. 福建建设科技. 2023(03): 37-40 . 百度学术
10. 古伟斌,蔡强,郭佰良. CSM双轮铣搅墙特点及其在基坑支护止水帷幕的应用. 广东土木与建筑. 2023(05): 83-86 . 百度学术
11. 黄开勇,梁志荣,魏祥. 双排型钢等厚水泥土墙在深大基坑中的应用分析. 建筑结构. 2023(S1): 2902-2907 . 百度学术
12. 王川. 深厚粉细砂地层深搅铣形成防渗墙施工分析. 工程技术研究. 2023(11): 57-59 . 百度学术
13. 董晓斌,苏定立,胡贺松,李翔,唐孟雄,谢丁,谢小荣. 基于CSM工法的止水帷幕施工技术及设备研究现状. 广州建筑. 2023(06): 55-58 . 百度学术
14. 郭建飞. 复杂环境下深基坑围护设计施工方法研究. 建设科技. 2022(11): 102-104 . 百度学术
15. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 . 百度学术
16. 尤田,郭佳嘉. 超深锚碇基础SMC工法槽壁力学性能研究. 世界桥梁. 2022(06): 80-85 . 百度学术
17. 张芳,韩林芳,赵怡琳,桑运龙,刘学增,高尚,杨研. 富水地区深基坑封底榫槽关键参数研究. 隧道建设(中英文). 2022(11): 1913-1920 . 百度学术
18. 魏祥,梁志荣,罗玉珊. 软土地区临江深大基坑工程地下水综合控制技术实践. 上海国土资源. 2022(04): 39-43+66 . 百度学术
19. 李万全,刘德港,田万君,李永贺. 提高水泥土搅拌墙在岩溶地质中入岩速率的研究. 建筑技术开发. 2022(24): 123-125 . 百度学术
20. 李汉龙,李学军,曾开华,崔猛,刘海林. CSM工法在深厚饱和砂土地基的现场试验研究. 南昌工程学院学报. 2021(01): 45-50 . 百度学术
21. 李新,黄健,樊海元,陶金海,李昊雨,杨凡林. 复杂场地条件下深基坑围护技术及工程应用研究. 工程建设与设计. 2021(13): 36-38+47 . 百度学术
22. 丁昊. TRD工法和CSM工法在上海地区超深基坑工程止水帷幕的应用. 上海建设科技. 2021(04): 49-50+53 . 百度学术
23. 邵勇,李光诚,帅红岩,张玉山. 超深止水帷幕在武汉长江Ⅰ级阶地冲积相基坑支护工程中的选取和应用. 资源环境与工程. 2021(06): 882-886 . 百度学术
24. 李雄威,何亮,黄开林,秦羽. 承压水条件下基坑抗突涌安全措施分析. 土工基础. 2020(05): 602-606+611 . 百度学术
25. 蔡忠祥,岳建勇,胡耘. CSM工法等厚度水泥土搅拌墙在紧邻既有建筑深基坑工程中的应用. 四川建筑科学研究. 2020(S1): 32-40 . 百度学术
26. 冯晓腊,崔德山,熊宗海,莫云. 武汉软土地层特点及深基坑降水研究新进展. 四川建筑科学研究. 2020(S1): 9-17 . 百度学术
27. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 . 百度学术
28. 刘动. 深圳地区深基坑开挖地下水控制研究. 勘察科学技术. 2020(06): 43-48 . 百度学术
29. 陈佳培,唐力. CSM等厚度水泥土搅拌墙在长江漫滩地质上的应用. 河南科技. 2019(28): 83-85 . 百度学术
其他类型引用(4)