New simplified method for calculating consolidation settlement of clayey soils exhibiting creep and its verification
-
摘要: 针对黏性土的固结与蠕变之间的关系,目前存在两个观点:假设A认为固结期间黏性土不会发生蠕变变形,蠕变变形发生在固结变形之后;假设B则认为黏性土的蠕变是土骨架的固有属性之一,它与固结变形同时发生。室内单元体试验结果和现场监测数据表明假设A常常低估了黏性土的总变形。然而,基于假设B的精确解常需要将土体弹黏塑性本构模型导入有限元软件才能进行固结沉降的分析,因而限制了该观点的应用。提出了一个考虑多级变荷载作用下蠕变与固结近似耦合分析的新简化方法。该简化方法具有形式简洁,参数明确的优点,可适用于黏性土的各种应力-应变状态和加载—卸载—再加载的复杂受力情况。选取瑞典的典型填筑工程,将新简化方法计算的沉降变形与有限元模拟结果、46 a的现场监测数据进行了对比分析,验证了新简化方法的正确性、精确性和广泛的应用范围。Abstract: There are two possible extreme opinions in terms of Hypotheses A and B: Hypothesis A assumes that creep occurs after the consolidation for both laboratory specimen and in-situ condition, whereas Hypothesis B assumes creep occurs during and after the “primary” consolidation. A new simplified method is proposed to calculate the consolidation settlement of clayey soils with creep subjected to the multi-staged ramp loading. The parameters of the new simplified method have the clear physical meanings, and it is easy to be used. With the help of the “equivalent time” concept, both normally consolidated state and over-consolidated state of clayey soils can be considered in the new simplified method. A typical project in Sweden was selected as a multilayered soil profile. The calculated results of the new simplified method offer a good estimation of the settlement by comparing with the results from the finite element analysis and 46 years’ recorded settlement data.
-
Keywords:
- new simplified method /
- settlement /
- finite element method /
- clayey soil /
- elastic visco-plasticity
-
[1] LADD C C, FOOTT R, ISHIHARA K, et al.Stress-deformation and strength characteristics. state-of the-art report[C]// Proc 9th Int Conf Soil Mech Found Engng. Tokyo, 1977, 2: 421-494. [2] YIN Jian-Hua, GRAHAM James.Elastic visco-plastic modelling of one-dimensional consolidation[J]. Géotechnique, 1996, 46(3): 515-527. [3] BJERRUM L.Engineering geology of Norwegian normally- consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 83-118. [4] 殷建华. 从本构模型研究到试验和光纤监测设备研发. 岩土工程学报, 2011, 33(1):1-15.
(YIN Jian-hua.From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1-5. (in Chinese))[5] YIN Jian-Hua, FENG W Q.A new simplified method and its verification for calculation of consolidation settlement of a clayey soil with creep[J]. Canadian Geotechnical Journal, 2016, 54(3): 333-347. [6] FENG W Q, YIN J H.A new simplified Hypothesis B method for calculating consolidation settlements of double soil layers exhibiting creep[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(6): 899-917. [7] ZHU Guo-fu, YIN Jian-hua.Consolidation of double soil layers under depth-dependent ramp load[J]. Géotechnique, 1999, 49(3): 415-421. [8] LARSSON R, MATTSSON H.Settlements and shear strength increase below embankments[R]. Geotechnical Institute Report, 2003: 63. [9] HOLTZ R D, BROMS, B.Long-term loading tests at Ska-Edeby, Sweden[C]// Proc of ASCE Spe Conf Perf of Earth Sup Structures. Lafayette, 1972: 273-284. -
期刊类型引用(17)
1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术
其他类型引用(17)