• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究

郁舒阳, 王海军, 任然, 汤雷, 钟凌伟, 张志韬, 汤子璇

郁舒阳, 王海军, 任然, 汤雷, 钟凌伟, 张志韬, 汤子璇. 基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究[J]. 岩土工程学报, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024
引用本文: 郁舒阳, 王海军, 任然, 汤雷, 钟凌伟, 张志韬, 汤子璇. 基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究[J]. 岩土工程学报, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024
YU Shu-yang, WANG Hai-jun, REN Ran, TANG Lei, ZHONG Lin-wei, ZHANG Zhi-tao, TANG Zi-xuan. Propagation of double internal cracks under uniaxial tension based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024
Citation: YU Shu-yang, WANG Hai-jun, REN Ran, TANG Lei, ZHONG Lin-wei, ZHANG Zhi-tao, TANG Zi-xuan. Propagation of double internal cracks under uniaxial tension based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024

基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究  English Version

基金项目: 国家自然科学基金项目(51409170,51739008,U1765204); 江苏省自然科学基金项目(BK20171130); 中央级公益性科研院所基本科研业务费项目(Y419005)
详细信息
    作者简介:

    郁舒阳(1993— ),男,博士研究生,研究方向为脆性固体断裂力学。E-mail:yushuyang_hhu@163.com。

    通讯作者:

    王海军,E-mail:hjwang@nhri.cn

  • 中图分类号: TU45

Propagation of double internal cracks under uniaxial tension based on 3D-ILC

  • 摘要: 多裂纹相互作用是断裂力学研究的重要内容,但是针对单轴拉伸下的三维多内裂纹相互作用研究较少。基于3D-ILC技术,在完整立方体试件中生成三维双平行内裂纹,对不同错距d开展单轴拉伸试验,分析了断裂过程、应力云纹、起裂与破坏荷载及断口特征,基于M积分和MTS准则开展裂纹扩展路径及相互作用模拟。结果表明:①内裂纹错距为2 mm时相互“吸引”,错距为6与10 mm先相互“吸引”后“排斥”;②三维双内裂纹单轴拉伸下具有“合并分界”、“漏斗状”特征等断裂形态,其中裂纹中心侧发生I-II型复合断裂,外侧发生纯I型断裂;③初始应力云纹在预制裂纹尖端呈现“花瓣状”,裂纹相互“吸引”过程中应力云纹在中心侧裂纹尖端呈现“括弧状”;④试样强度与裂纹间错距成正比,错距为2,6,10 mm抗拉强度相对完整试样下降百分比分别为63.39%,50.79%,41.09%。起裂荷载与最终破坏荷载的比值分别为12.92%,15.16%,13.57%;⑤基于M积分,得出内裂纹I、II型应力强度因子分布规律,基于MTS裂纹扩展判据,实现三维双内纹的相互作用扩展全过程数值模拟,与试验一致。研究结果为三维双平行内裂纹相互作用研究提供试验与理论基础。
    Abstract: The multiple-crack interaction is an important research topic in fracture mechanics, but few studies have focused on the interaction of 3D internal cracks under uniaxial tension. 3D double internal cracks are generated based on 3D-ILC. Uniaxial tensile tests are performed on the specimens with different vertical spacings (d). The fracture process, stress moire, crack initiation, failure load and fractography are analyzed. Then the numerical simulation is carried out. The results show that: (1) The the two cracks attract eath other when d is 2 mm, while they first attract then repulse each other when d is 6 or 10 mm. (2) The fracture morphologies such as “intersection boundary” and “funnel” are observed. I-II mixed-mode fracture occurs inside the crack, and mode I fracture occurs at the outer side. (3) Through the stress moire, the petal-shaped stripe can be observed at the crack tips, and the parentheses-shaped stripe appears during the process of attraction. (4) The strength of the specimens is proportional to d. Compared with that of the intact samples, the tensile strength decreases by 63.39%, 50.79% and 41.09%, respectively. (5) The distributions of mode I and II stress intensity factors are obtained based on M-integral, and the crack propagation is simulated according to MTS, which is consistent with the tests. The results may provide experimental support for the corresponding theoretical researches.
  • [1] HORII H, NEMAT-NASSER S.Elastic fields of interacting inhomogeneities[J]. International Journal of Solids & Structures, 1985, 21(7): 731-745.
    [2] 朱维申, 李术才, 陈卫忠. 节理岩体破坏机理和锚固效应及工程应用[M]. 北京: 科学出版社, 2002.
    (ZHU Wei-shen, LI Shu-cai, CHEN Wei-zhong.Failure mechanism and anchoring effect of jointed rock mass and its engineering application[M]. Beijing: Science Press, 2002. (in Chinese))
    [3] TANG C A, LIN P, WONG R, et al.Analysis of crack coalescence in rock-like materials containing three flaws: Part II numerical approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 925-939.
    [4] SOBOYEJO W O, KNOTT J F, WALSH M J, et al.Fatigue crack propagation of coplanar semi-elliptical cracks in pure bending[J]. Engineering Fracture Mechanics, 1990, 37(2): 323-340.
    [5] FENDER M L, LECHENAULT F, DANIELS K E.Universal shapes formed by two interacting cracks[J]. Physical Review Letters, 2010, 105(12): 125505.
    [6] DALBE M J, KOIVISTO J, VANEL L, et al.Repulsion and attraction between a pair of cracks in a plastic sheet[J]. Physical Review Letters, 2015, 114(20): 205501.
    [7] SCHWAAB M E, BIBEN T, SANTUCCI S, et al.Interacting cracks obey a multiscale attractive to repulsive transition[J]. Physical Review Letters, 2018, 120(25): 255501.
    [8] 朱珍德, 林恒星, 孙亚霖. 透明类岩石内置三维裂纹扩展变形试验研究[J]. 岩土力学, 2016, 37(4): 913-921, 928.
    (ZHU Zhen-de, LIN Heng-xing, SUN Ya-lin. Experimental study on internal three-dimensional crack propagation and deformation of transparent rocks[J]. Geotechnical Mechanics, 2016, 37(4): 913-921, 928. (in Chinese))
    [9] 付金伟. 含三维裂隙试件在双轴压力和水压作用下压裂试验与数值模拟研究[D]. 济南: 山东大学, 2015.
    (FU Jin-wei.Fracturing test and numerical simulation of specimens with three-dimensional cracks under biaxial pressure and water pressure[D]. Jinan: Shandong University, 2015. (in Chinese))
    [10] YAN X.A boundary element analysis for stress intensity factors of multiple circular arc cracks in a plane elasticity plate[J]. Applied Mathematical Modelling, 2010, 34(10): 2722-2737.
    [11] 石路杨, 余天堂. 多裂纹扩展的扩展有限元法分析[J]. 岩土力学, 2014, 35(1): 263-272.
    (SHI Lu-yang, YU Tian-tang.Finite element analysis of multicrack propagation[J]. Geotechnical Mechanics, 2014, 35(1): 263-272. (in Chinese))
    [12] 王海军, 张九丹, 任然, 等. 基于激光-介质损伤的三维内裂纹3D-ILC实现[J]. 岩土工程学报, 2019, 41(12): 2345-2352.
    (WANG Hai-jun, ZHANG Jiu-dan, REN Ran, et al.Embedded crcaks in materials induced by 3D-ILC[J]. Chineses Journal of Geotchnical Engineering, 2019, 41(12): 2345-2352. (in Chinese))
    [13] 王海军, 郁舒阳, 任然, 等. 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验[J]. 岩土力学, 2019, 40(6): 2200-2212.
    (WANG Hai-jun, YU Shu-yang, REN Ran, et al.Fracture characteristics of brazilian disk with fully internal crack based on 3D-ILC[J]. Rock and Soil Mechanics, 2019, 40(6): 2200-2212. (in Chinese)).
    [14] 王海军, 张九丹, 任然, 等. 基于3D-ILC含不同角度内裂纹圆盘断裂特性研究[J]. 岩土工程学报, 2019, 41(9): 1636-1644.
    (WANG Haijun, ZHANG Jiudan, REN Ran, et al.The study of the fracture properties of the crack in different angles based on the 3D-ILC[J]. Geotechnical Engineering, 2019, 41(9): 1636-1644. (in Chinese))
    [15] 李世愚. 岩石断裂力学导论[M]. 合肥: 中国科学技术大学出版社, 2010.
    (LI Shi-yu.Introduction to rock fracture mechanics[M]. Hefei: Press of University of Science and Technology of China, 2010. (in Chinese))
    [16] 雷振坤. 结构分析数字光测力学[M]. 大连: 大连理工大学出版社, 2012.
    (LEI Zhen-kun.Digital photometric mechanics for structural analysis[M]. Dalian: Dalian University of Technology Press, 2012. (in Chinese))
    [17] 王海军, 李汉章, 任然, 等. 基于3D-ILC三点弯脆性固体内裂纹扩展破坏规律研究[J]. 岩石力学与工程学报, 2019, 38(12): 2463-2477.
    (WANG Hai-jun, LI Han-zhang, REN Ran, et al.Study on crack propagation and failure law in three-point bending brittle solid based on 3D-ILC[J]. Journal of Rock Mechanics and Engineering, 2019, 38(12): 2463-2477. (in Chinese))
    [18] 王海军, 郁舒阳, 任然, 等. 基于3D-ILC含三维内裂纹圆球I-II-III 型断裂研究[J]. 岩土力学, 2020(5): 1-10. https://doi.org/10.16285/j.rsm.2019.1071.
    (WANG Hai-jun, YU Shu-yang, REN Ran, et al.Fracture of brittle sphere solid with fully internal crack based on 3D-ILC[J]. Soil and Rock Mechanics, 2020(5): 1-10. https://doi.org/10.16285/ j.rsm.2019.1071. (in Chinese))
    [19] QUINN G D.Fractography of ceramics and glasses[R]. Gaithersburg: National Institute of Standards and Technology, 2016.
  • 期刊类型引用(17)

    1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
    2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
    3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
    4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
    5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
    6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
    7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
    8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
    9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
    10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
    11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
    12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
    13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
    14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
    15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
    16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
    17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 34
出版历程
  • 收稿日期:  2018-09-20
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回