• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于激光-介质损伤的三维内裂纹3D-ILC实现

王海军, 张九丹, 任然, 汤雷, 钟凌伟

王海军, 张九丹, 任然, 汤雷, 钟凌伟. 基于激光-介质损伤的三维内裂纹3D-ILC实现[J]. 岩土工程学报, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
引用本文: 王海军, 张九丹, 任然, 汤雷, 钟凌伟. 基于激光-介质损伤的三维内裂纹3D-ILC实现[J]. 岩土工程学报, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
Citation: WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021

基于激光-介质损伤的三维内裂纹3D-ILC实现  English Version

基金项目: 国家自然科学基金项目(51409170); 江苏省自然科学基金面上项目(BK20171130); 中央级公益性科研院所基本科研业务费专项资金重点项目(Y419005)
详细信息
    作者简介:

    王海军(1985— ),男,博士,高级工程师,主要从事断裂力学与岩石力学相关科研工作。E-mail:hjwang@nhri.cn。

    通讯作者:

    汤雷,E-mail:ltang@nhri.cn

  • 中图分类号: TU452

Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)

  • 摘要: 在材料内部制作可用于试验的真实、可控的三维内裂纹,一直是断裂力学中的基础性难题。针对此瓶颈,提出了通过电磁场在试样内部制造等离子体进而制作任意宏观三维内裂纹的全新方法“3D-ILC”,实现了“内科手术式”制作内裂纹而对表面无任何影响。首先综述传统的脆性材料的内裂纹制作方法及不足,然后给出激光-介质损伤的基本原理与3D-ILC实现方法,给出基于3D-ILC技术的单裂纹、随机多裂纹、双X形内裂纹试样实例。通过经典的单轴压缩与巴西圆盘试验,证明3D-ILC在断裂力学三维内裂纹断裂力学研究中的可用性。结果表明:3D-ILC相对于传统方法具有以下优势:①可观测性强;②简便、快速、高效;③裂纹真实;④试样均质度、脆性度高、完整性强;⑤裂纹数量、尺寸可控。3D-ILC的提出,解决了断裂力学百年来在材料内部实现任意可控宏观三维内裂纹这一基本问题,使原本复杂和高门槛的三维内裂纹扩展断裂研究具备“平民化”的特征,对于推动断裂力学中内裂纹及三维问题的研究,具有重要意义。
    Abstract: The research of fracture mechanics is based on physical experiments, which mainly deal with the specimen containing cracks and defaults. Since surface cracks and penetrated cracks are relatively easy to make and observe, the theoretical study on fracture mostly depends on these two kinds of experiments. The embedded cracks actually can largely influence the characteristics of the materials. However, the experiments with embedded cracks have been a tough task because of the difficulty in the manufacturing technique. A new method (3D-ILC) is proposed for making the internal embedded cracks based on the laser-medium damage theory. Firstly, review of the traditional methods for embedded cracks is given. Then the theory of laser-medium damage is proposed. The specimen examples with a single embedded crack, double X-type cracks and multi-cracks are shown. By the axial compressive experiment tests, the feasibility of 3D-ILC is confirmed. Meanwhile, 3D-ILC has the following advantages: easy observation, economy and efficiency, real cracks, high homogeneity, easy control and great reduction of discretization of results, which is very important in experimental research. The proposed 3D-ILC method will provide vast potential for future development of fracture mechanics.
  • [1] 余寿文. 断裂力学的历史发展与思考[J]. 力学与实践, 2015, 37(3): 390-394.
    (YU Shou-wen.The history and development of fracture mechanics[J]. Mechanics in Engineering, 2015, 37(3): 390-394. (in Chinese))
    [2] 国峰楠. 含界面非均匀材料的热断裂力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    (Guo Feng-nan.Study on thermal fracture mechanics of non-uniform materials with interface[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese))
    [3] 徐世烺, 董丽欣, 王冰伟, 等. 我国混凝土断裂力学发展三十年[J]. 水利学报, 2014, 45(增刊1): 1-9.
    (XU Shi-yu, DONG Li-xin, WANG Bing-wei, et al.The development of concrete fracture mechanics in China for 30 years[J]. Hydraulic Engineering, 2014, 45(S1): 1-9. (in Chinese))
    [4] 嵇醒. 断裂力学判据的评述[J]. 力学学报, 2016, 48(4): 741-753.
    (JI Xing.A review of fracture mechanics criteria[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 741-753. (in Chinese))
    [5] 袁进科, 裴向军. 汶川地震震裂山体裂缝变形特征与动力机制研究[J]. 防灾减灾工程学报, 2015, 35(6): 848-855.
    (YUAN Jin-ke, PEI Xiang-jun.Study on fracture deformation characteristics and dynamic mechanism of fractured mountain body in Wenchuan earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 848-855. (in Chinese))
    [6] 刘泉声, 魏莱, 刘学伟, 等. 基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J]. 岩石力学与工程学报, 2017, 36(7): 1561-1569.
    (LIU Quan-sheng, WEI Lei, LIU Xue-wei, et al.Empirical prediction method of rock crack initiation based on Griffith strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1561-1569. (in Chinese))
    [7] 安兵兵. 生物硬组织材料的变形与断裂机理研究及材料设计[D]. 上海: 上海大学, 2012.
    (AN Bing-bing.Study on deformation and fracture mechanism and material design of bio-hard tissue materials[D]. Shanghai: Shanghai University, 2012. (in Chinese))
    [8] GRIFFITH. The phenomena of rupture and flow in solids[J]. Phil Trans Roy Soc, 1920, 221: 163-198.
    [9] IRWIN G R.Analysis of stresses and strains near end of a crack traversing a plate[J]. J Appl Mech, 1957, 24: 361-364.
    [10] RICE J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386.
    [11] LAWN B.Fracture of brittle solids[M]. Cambridge: Cambridge University Press, 1993.
    [12] 赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考[J]. 地下空间与工程学报, 2016, 12(增刊2): 899-906.
    (ZHAO Hong-bao, HU Gui-lin, LI Wei, et al.The research progress and thinking on the crack growth of the pre-fabricated crack rock[J]. Chinese Journal Underground Space and Engineering, 2016, 12(S2): 899-906. (in Chinese))
    [13] 李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2015.
    (LI Shi-yu, TAI Ming, YIN Xiang-chu.Rock fracture mechanics[M]. Beijing: Science Press, 2015. (in Chinese))
    [14] JIANG C, ZHAO G, ZHU J, et al.Investigation of dynamic crack coalescence using a gypsum-like 3d printing material[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3983-3998.
    [15] 赵毅鑫, 龚爽, 姜耀东, 等. 基于半圆弯拉试验的煤样抗拉及断裂性能研究[J]. 岩石力学与工程学报, 2016, 35(6): 1255-1264.
    (ZHAO YI-xin, GONG Shuang, JIANG Yao-dong, et al.Study on tensile and fracture properties of coal samples based on semicircle bending tensile test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1255-1264. (in Chinese))
    [16] 王慧晶. 基于声发射参数的材料疲劳断裂研究[D]. 大连:大连理工大学, 2013.
    (WANG Hui-jing.Study on fatigue fracture of materials based on acoustic emission parameters[D]. Dalian: Dalian University of Technology, 2013. (in Chinese))
    [17] 袁红梅. 黏结结构界面缺陷超声检测技术及其应用研究[D]. 北京: 北京工业大学, 2010.
    (YUAN Hong-mei.Ultrasonic testing technology for interfacial defects of bonded structures and its application[D]. Beijing: Beijing University of Technology, 2010. (in Chinese))
    [18] SOMMER E.Formation of fracture lances in glass[J]. Engineering Fracture Mechanics, 1969, 1(3): 539-546.
    [19] 朱维申, 陈卫忠, 申晋. 雁形裂纹扩展的模型试验及断裂力学机制研究[J]. 固体力学学报, 1998, 19(4): 75-80.
    (ZHU Wei-shen, CHEN Wei-zhong, SHEN Jin.Study on the model test and fracture mechanics of the extension of the goose-shaped crack[J]. Acta Mechanica Solida Sinica, 1998, 19(4): 75-80. (in Chinese))
    [20] SARFARAZI V, HAERI H.A review of experimental and numerical investigations about crack propagation[J]. Computers and Concrete, 2016, 18(2): 235-266.
    [21] 李术才, 杨磊, 李明田, 等. 三维内置裂隙倾角对类岩石材料拉伸力学性能和断裂特征的影响[J]. 岩石力学与工程学报. 2009, 28(2): 281-289.
    (LI Shu-cai, YANG Lei, LI Ming-tian, et al.Effect of three-dimensional built-in fracture dip angle on tensile mechanical properties and fracture characteristics of rock-like materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 281-289. (in Chinese))
    [22] 李廷春, 吕海波, 王辉. 单轴压缩载荷作用下双裂隙扩展的CT 扫描试验[J]. 岩土力学, 2010, 31(1): 9-14.
    (LI Ting-chun, LÜ Hai-bo, WANG Hui.CT scanning test of double crack propagation under uniaxial compression[J]. Rock and Soil Mechanics, 2010, 31(1): 9-14. (in Chinese))
    [23] 林鹏, 周雅能, 李子昌, 等. 含三维预置单裂纹缺陷岩石破坏试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3882-3887.
    (LIN Peng, ZHOU Yan-neng, LI Zi-chang, et al.Experimental study on rock failure with 3-D pre-placed single crack defects[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3882-3887. (in Chinese))
    [24] ADAMS M, SINES G.Crack extension from flaws in a brittle material subjected to compression[J]. Tectonophysics, 1978, 49(1): 97-118.
    [25] DYSKIN A, JEWELL R, JOER H, et al.Experiments on 3-D crack growth in uniaxial compression[J]. International Journal of Fracture, 1994, 65(4): 77-83.
    [26] DYSKIN A V, SAHOURYEH E, JEWELL R J, et al.Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(15): 2115-2136.
    [27] FU J, CHEN K, ZHU W, et al.Progressive failure of new modelling material with a single internal crack under biaxial compression and the 3-D numerical simulation[J]. Engineering Fracture Mechanics, 2016, 165: 140-152.
    [28] 朱珍德, 林恒星, 孙亚霖. 透明类岩石内置三维裂纹扩展变形试验研究[J]. 岩土力学, 2016, 37(4): 913-921.
    (ZHU Zhen-de, LIN Xie-xing, SUN Ya-lin.Experimental study on 3-D crack propagation and deformation of transparent rock[J]. Rock and Soil Mechanics, 2016, 37(4): 913-921. (in Chinese))
    [29] 程靳, 赵树山. 断裂力学[M]. 北京: 科学出版社, 2006.
    (CHENG Jin, ZHAO Shu-shan.Fracture mechanics[M]. Beijing: Science Press, 2006. (in Chinese))
    [30] KOLARI K.A complete three-dimensional continuum model of wing-crack growth in granular brittle solids[J]. International Journal of Solids and Structures, 2016, 115: 27-42.
    [31] 郭彦双, 林春金, 朱维申. 脆性材料中三维裂隙断裂试验、理论与数值模拟研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3191-3195.
    (GUO Yan-shuang, LIN Chun-jin, ZHU Wei-shen.Theoretical and numerical simulation of three-dimensional fracture test in brittle materials[J]. Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3191-3195. (in Chinese))
    [32] TANG H, ZHU Z, ZHU M, et al.Mechanical behavior of 3D crack growth in transparent rock-like material containing preexisting flaws under compression[J]. Advances in Materials Science and Engineering, 2015(2): 1-10.
    [33] 付金伟, 朱维申, 谢富东, 等. 岩石中三维双裂隙组扩展和贯通过程的试验研究和弹脆性模拟[J]. 岩土力学, 2013, 34(9): 2489-2496.
    (FU Jin-wei, ZHU Wei-shen, XIE Fu-dong, et al.Experimental study and elastic brittleness simulation of the propagation and penetration process of three-dimensional double-crack groups in rock[J]. Rock and Soil Mechanics, 2013, 34(9): 2489-2496. (in Chinese))
    [34] 孙亚霖, 朱珍德, 林恒星. 透明类岩石材料内置裂隙试验研究[J]. 河北工程大学学报( 自然科学版), 2015, 32(2): 1-4.
    (SUN Yi-lin, ZHU Zhen-de.Experimental study on the built-in fracture of transparent rock materials[J]. Journal of Hebei Engineering University (Natural Science Edition), 2015, 32(2): 1-4. (in Chinese))
    [35] KOTZ F, ARNOLD K, BAUER W, et al.Glass, three-dimensional printing of transparent[J]. Nature, 2017, 544(7650): 337-379.
    [36] 巫殷忠. 飞秒激光在固体材料上制作微结构的研究[D]. 天津: 天津大学, 2008.
    (WU Yin-zhong.Fabrication of microstructure on solid materials by femtosecond laser[D]. Tianjin: Tianjin University, 2008. (in Chinese))
    [37] 王敏. 飞秒激光加工玻璃材料微结构技术研究[D]. 深圳: 深圳大学, 2016.
    (WANG Min.Study on the microstructure of glass material for femtosecond laser processing[D]. Shenzhen: Shenzhen University, 2016. (in Chinese))
    [38] 游牧. 超短激光脉冲与透明介质相互作用[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2005.
    (YOU Mu. The ultrashort laser pulse interacts with the transparent medium[D]. Xi'an: Graduate School of Chinese Academy of Sciences (Xi'an Optical Precision Machinery Research Institute), 2005. (in Chinese))
    [39] 刘大勇. 石英玻璃中飞秒激光三维加工阈值的研究及其应用[D]. 北京: 北京大学, 2008.
    (LIU Da-yong.Study on the threshold of femtosecond laser three-dimensional machining in quartz glass and its application[D]. Beijing: Peking University, 2008. (in Chinese))
    [40] CHEN F F, 林光海. 等离子体物理学导论[M]. 北京: 科学出版社, 1980.
    (CHEN F F, LIN Guang-hai.Introduction to plasma physics[M]. Beijing: Science Press, 1980. (in Chinese))
    [41] 王玺. 准分子激光损伤K9玻璃和熔石英的理论与实验研究[D]. 合肥: 中国科学技术大学, 2016.
    (WANG Xi.Theoretical and experimental study on excimer laser damage of K9 glass and fused quartz[D]. Hefei: China University of Science and Technology, 2016. (in Chinese))
  • 期刊类型引用(29)

    1. 马乐,李云,陈晨文. 上软下硬地层CSM整体式止水帷幕施工关键技术. 施工技术(中英文). 2024(11): 97-102 . 百度学术
    2. 陈伟. 复杂富水地层地铁深大基坑渗漏治理技术研究. 施工技术(中英文). 2024(13): 109-114 . 百度学术
    3. 孙立光,朱颖,时刚,王瑜,刘攀,郜新军,朱超杰. 饱和地基中劲芯水泥土墙隔振的二维BEM-FEM耦合分析. 世界地震工程. 2024(04): 164-178 . 百度学术
    4. 任路,秦超,向虎,杨天成,李荣华. 武汉某高层建筑深基坑设计与施工. 施工技术(中英文). 2023(01): 119-124 . 百度学术
    5. 代兴云,应卫超,孙海明. 深基坑承压水组合式处理措施的研究及应用. 城市道桥与防洪. 2023(01): 178-182+23 . 百度学术
    6. 刘树佳. 上海地区特深圆形竖井开挖承压水控制技术及效果. 水资源与水工程学报. 2023(01): 127-134 . 百度学术
    7. 魏斌,刘长斌,康建国,刘畅,杨宇航. 富水软土地区超深基坑CSM施工技术研究. 建筑施工. 2023(01): 18-21 . 百度学术
    8. 刘鹭. 双轮铣深层搅拌工法在复杂城市地下空间开发的应用研究. 福建建设科技. 2023(03): 41-44 . 百度学术
    9. 李成巍,李伟,梁志荣. 紧临越江隧道软土地层深大基坑工程设计与实践. 福建建设科技. 2023(03): 37-40 . 百度学术
    10. 古伟斌,蔡强,郭佰良. CSM双轮铣搅墙特点及其在基坑支护止水帷幕的应用. 广东土木与建筑. 2023(05): 83-86 . 百度学术
    11. 黄开勇,梁志荣,魏祥. 双排型钢等厚水泥土墙在深大基坑中的应用分析. 建筑结构. 2023(S1): 2902-2907 . 百度学术
    12. 王川. 深厚粉细砂地层深搅铣形成防渗墙施工分析. 工程技术研究. 2023(11): 57-59 . 百度学术
    13. 董晓斌,苏定立,胡贺松,李翔,唐孟雄,谢丁,谢小荣. 基于CSM工法的止水帷幕施工技术及设备研究现状. 广州建筑. 2023(06): 55-58 . 百度学术
    14. 郭建飞. 复杂环境下深基坑围护设计施工方法研究. 建设科技. 2022(11): 102-104 . 百度学术
    15. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 . 百度学术
    16. 尤田,郭佳嘉. 超深锚碇基础SMC工法槽壁力学性能研究. 世界桥梁. 2022(06): 80-85 . 百度学术
    17. 张芳,韩林芳,赵怡琳,桑运龙,刘学增,高尚,杨研. 富水地区深基坑封底榫槽关键参数研究. 隧道建设(中英文). 2022(11): 1913-1920 . 百度学术
    18. 魏祥,梁志荣,罗玉珊. 软土地区临江深大基坑工程地下水综合控制技术实践. 上海国土资源. 2022(04): 39-43+66 . 百度学术
    19. 李万全,刘德港,田万君,李永贺. 提高水泥土搅拌墙在岩溶地质中入岩速率的研究. 建筑技术开发. 2022(24): 123-125 . 百度学术
    20. 李汉龙,李学军,曾开华,崔猛,刘海林. CSM工法在深厚饱和砂土地基的现场试验研究. 南昌工程学院学报. 2021(01): 45-50 . 百度学术
    21. 李新,黄健,樊海元,陶金海,李昊雨,杨凡林. 复杂场地条件下深基坑围护技术及工程应用研究. 工程建设与设计. 2021(13): 36-38+47 . 百度学术
    22. 丁昊. TRD工法和CSM工法在上海地区超深基坑工程止水帷幕的应用. 上海建设科技. 2021(04): 49-50+53 . 百度学术
    23. 邵勇,李光诚,帅红岩,张玉山. 超深止水帷幕在武汉长江Ⅰ级阶地冲积相基坑支护工程中的选取和应用. 资源环境与工程. 2021(06): 882-886 . 百度学术
    24. 李雄威,何亮,黄开林,秦羽. 承压水条件下基坑抗突涌安全措施分析. 土工基础. 2020(05): 602-606+611 . 百度学术
    25. 蔡忠祥,岳建勇,胡耘. CSM工法等厚度水泥土搅拌墙在紧邻既有建筑深基坑工程中的应用. 四川建筑科学研究. 2020(S1): 32-40 . 百度学术
    26. 冯晓腊,崔德山,熊宗海,莫云. 武汉软土地层特点及深基坑降水研究新进展. 四川建筑科学研究. 2020(S1): 9-17 . 百度学术
    27. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 . 百度学术
    28. 刘动. 深圳地区深基坑开挖地下水控制研究. 勘察科学技术. 2020(06): 43-48 . 百度学术
    29. 陈佳培,唐力. CSM等厚度水泥土搅拌墙在长江漫滩地质上的应用. 河南科技. 2019(28): 83-85 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  275
  • HTML全文浏览量:  14
  • PDF下载量:  156
  • 被引次数: 33
出版历程
  • 收稿日期:  2017-11-02
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回