• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于核磁共振下的冻土-结构正融过程界面特性研究

杜洋, 唐丽云, 杨柳君, 王鑫, 白苗苗

杜洋, 唐丽云, 杨柳君, 王鑫, 白苗苗. 基于核磁共振下的冻土-结构正融过程界面特性研究[J]. 岩土工程学报, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
引用本文: 杜洋, 唐丽云, 杨柳君, 王鑫, 白苗苗. 基于核磁共振下的冻土-结构正融过程界面特性研究[J]. 岩土工程学报, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
Citation: DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017

基于核磁共振下的冻土-结构正融过程界面特性研究  English Version

详细信息
    作者简介:

    杜 洋(1995— ),男,硕士研究生,主要从事冻土与结构界面特性研究工作。E-mail:duyang0802@126.com。

  • 中图分类号: TU445

Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance

  • 摘要: 升温解冻导致冻土-结构相互作用发生劣化,为探究正融过程中冻土-结构相互作用,基于NMR分层测试技术对正融过程中界面未冻水含量进行测试,得到界面温度-未冻水含量变化规律;同时开展不同法向压力下界面剪切试验,得到界面温度-抗剪强度相关关系,从而进一步探究界面温度-未冻水含量-抗剪强度之间的内在联系。结果表明:NMR分层测试T2曲线可从微观尺度对界面融化过程进行表征,即正融过程界面小孔隙冰晶体融化开始,随着融化程度的加深大孔隙的冰也开始融化,最后直至界面处冰完全融化。根据界面温度-未冻水含量-抗剪强度的变化特征可将整个正融过程划分为冻结阶段、相变阶段、融化阶段3个阶段。依据莫尔-库仑破坏准则分析可知,正融过程中界面内摩擦角、黏聚力呈“此消彼长”的变化特征,其中随着解冻程度加深界面内摩擦角呈先减小后增大,而界面黏聚力呈现先增大后相对减小。
    Abstract: The temperature-thawing causes the permafrost-structure interaction to deteriorate. In order to explore the frozen-soil interaction laws during the thawing process, based on the NMR stratification test technology, the interface unfrozen water content in the process of thawing is tested, and the change of interface temperature-unfrozen water content is obtained along with its variety law. At the same time, the interface shear tests under different normal pressures are carried out to obtain the relationship between interface temperature and shear strength, and further to explore the intrinsic link among interface temperature, unfrozen water content and shear strength. The results show that the T2 curve of NMR stratification can characterize the interface thawing process from the microscopic scale, in other words, the melting of small pore ice crystals begins at the interface of the thawing process. As the melting depth deepens, the ice of the large pores begins to melt until the ice which is at the final interface completely melts. According to the change characteristics of the interface temperature-unfrozen water content-shear strength, the whole thawing process can be divided into three stages: freezing stage, phase change stage and melting stage. The analysis based on the Mohr-Coulomb failure criterion suggests that the internal friction angle and cohesive force of the interface during the thawing process change, which follows the law “as one falls, another rises”. And the internal friction angle decreases first and then increases with the degree of thawing, while the interface cohesive force first increases and then decreases relatively.
  • [1] 马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640.
    (MA Wei, WANG Da-yan.Retrospect and prospect of chinese frozen soil mechanics research 50a[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese))
    [2] 王博, 刘志强, 赵晓东, 等. 高压正融土与结构接触面剪切力学特性试验研究[J]. 岩土力学, 2017, 38(12): 3540-3546.
    (WANG Bo, LIU Zhi-qiang, ZHAO Xiao-dong, et al.Experimental study on shearing mechanical characteristics of thawing soil and structure interface under high pressure[J]. Rock and Soil Mechanics, 2017, 38(12): 3540-3546. (in Chinese))
    [3] LADANYI B.Frozen soil-structure interfaces[J]. Studies in Applied Mechanics, 1995, 42(6): 3-33.
    [4] RIST A, PHILLIPS M, SPRINGMAN S M.Inclinable shear box simulations of deepening active layers on perennially frozen scree slopes[J]. Permafrost and Periglacial Processes, 2012, 23(1): 26-38.
    [5] WEN Z, YU Q, MA W, et al.Experimental investigation on the effect of fiberglass reinforced plastic cover on adfreeze bond strength[J]. Cold Regions Science & Technology, 2016, 131: 108-115.
    [6] LIU J, LÜ P, CUI Y, et al.Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2014, 104: 1-6.
    [7] LIU J, CUI Y, WANG P, et al.Design and validation of a new dynamic direct shear apparatus for frozen soil[J]. Cold Regions Science and Technology, 2014, 106: 207-215.
    [8] 石泉彬, 杨平, 王国良. 人工冻结砂土与结构接触面冻结强度试验研究[J]. 岩石力学与工程学报, 2016, 35(10): 2142-2151.
    (SHI Quan-bin, YANG Ping, WANG Guo-liang.Experimental study on freezing strength of artificial frozen sand and structural contact surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2142-2151. (in Chinese))
    [9] 石泉彬, 杨平, 于可, 等. 冻土与结构接触面次峰值冻结强度试验研究[J]. 岩土力学, 2018(6).(SHI Quan-bin, YANG Ping, YU Ke, et al. Experimental study on secondary peak freezing strength of frozen soil and structural contact surface[J]. Rock and Soil Mechanics, 2018, 39(6): 2025-2034. (in Chinese))
    [10] 温智, 俞祁浩, 张建明, 等. 青藏直流输变电工程基础冻结强度试验研究[J]. 岩土工程学报, 2013, 35(12): 2262-2267.
    (WEN Zhi, YU Qi-hao, ZHANG Jian-ming, et al.Experimental study on foundation freezing strength of Qinghai-Tibet DC power transmission and transformation project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2262-2267. (in Chinese))
    [11] 冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
    (LENG Yi-fei, ZHANG Xi-fa, YANG Feng-xue, et al.A calorimetric test study on the unfrozen water content of frozen soil[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese))
    [12] 李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4): 1173-1177.
    (LI Shun-qun, GAO Ling-xia, CHAI Shou-xi.Study on the significance and interaction of the influencing factors of mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4): 1173-1177. (in Chinese))
    [13] 齐吉琳, 马巍. 冻土的力学性质及研究现状[J].岩土力学, 2010, 31(1): 133-143.
    (QI Ji-lin, MA Wei.Mechanical properties and research status of frozen soil[J]. Rock and Soil Mechanics, 2010, 31(1): 133-143. (in Chinese))
    [14] WATANABE K, WAKE T.Measurement of unfrozen water content and relative permittivityof frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science & Technology, 2009, 59(1): 0-41.
    [15] MOHNKE O, YARAMANCI U.Smooth and block inversion of surface NMR amplitudes and decay times using simulated annealing[J]. Journal of Applied Geophysics, 2002, 50(1): 163-177.
    [16] ZHOU K, BIN L I, JIELIN L I, et al.Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1254-1261.
    [17] LI J L, ZHOU K P, LIU W J, et al.NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2997-3003.
    [18] 寇璟媛, 滕继东, 张升. 冻土未冻水含量与孔径分布的试验探究[J]. 西安科技大学学报, 2018(2): 246-252.
    (KOU Jing-yuan, TENG Ji-dong, ZHANG Sheng.Experimental study on unfrozen water content and pore size distribution of frozen soil[J]. Journal of Xi'an University of Science and Technology, 2018(2): 246-252. (in Chinese))
    [19] 谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572.
    (TAN Long, WEI Chang-fu, TIAN Hui-hui, et al.Low-field NMR experimental study of unfrozen water content in frozen soil[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. (in Chinese))
    [20] 吉延峻, 贾昆, 俞祁浩, 等. 现浇混凝土-冻土接触面冻结强度直剪试验研究[J]. 冰川冻土, 2017, 39(1): 86-91.
    (JI Yan-jun, JIA Kun, YU Qi-hao, et al.Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 86-91. (in Chinese))
    [21] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2016.
    (LI Guang-xin.Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2016. (in Chinese))
    [22] 何鹏飞, 马巍, 穆彦虎, 等. 冻土-混凝土界面冻结强度特征与形成机理研究[J]. 农业工程学报, 2018, 34(23): 127-133.
    (HE Peng-fei, MA Wei, MU Yan-hu, et al.Study on freezing strength characteristics and formation mechanism of frozen soil-concrete interface[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 127-133. (in Chinese))
    [23] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
    (XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin.Frozen soil physics[M]. Beijing: Science Press, 2001. (in Chinese))
  • 期刊类型引用(17)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 夏虎. 砂土地基液化沉降的数值模拟探究. 四川建材. 2024(10): 77-79 . 百度学术
    3. 黄超天,王天齐,董玉翔,沈才华,曾志康. 级配砂不同含量的软土变形特性及其本构方程. 水道港口. 2024(05): 772-781 . 百度学术
    4. 张雪锋,李忠,陈诚,徐梓斐. 基于Origin的土工颗粒分析试验数据处理. 黄河水利职业技术学院学报. 2023(01): 42-45+54 . 百度学术
    5. 李涛,赵洪扬,翁勃航,黄晓冀,张钟毓. 细颗粒形状和含量对钙质混合砂强度的影响试验研究. 岩土工程学报. 2023(07): 1517-1525 . 本站查看
    6. 张武东,柴安俊,张建,李伟. 含细粒风积沙压实特性研究. 四川建材. 2023(10): 21-22+48 . 百度学术
    7. 尹志勇,许鸣珠,景立平,高攀,韩雪,杨光. 橡胶-砂混合土动力学研究进展. 自然灾害学报. 2023(05): 12-20 . 百度学术
    8. 李方圆,董林,夏坤,李燕,王晓磊. 细粒含量对砂土液化势影响探讨. 地震工程与工程振动. 2022(02): 244-251 . 百度学术
    9. 朱会强,张明,薛茹,郭军辉,贾继龙. 中美抗震规范中地层液化判定标准对比. 勘察科学技术. 2022(01): 1-6 . 百度学术
    10. 李富春,张璟泓,周红星,王婧,梁小丛. 粉粒及黏粒含量对强夯加固粉细砂土层效果的影响. 人民长江. 2022(08): 186-191 . 百度学术
    11. 张巍巍,袁延召,王彦军,李小龙,王攀,费召阳. 初始泥浆对吹填土抗液化强度CRR的影响. 科学技术与工程. 2022(26): 11310-11315 . 百度学术
    12. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
    13. 朱成浩,崔高航. 基于非对称滞回的不同细粒含量融化粉砂本构模型. 科学技术与工程. 2021(10): 4167-4174 . 百度学术
    14. 许锐,孔亮,袁庆盟,赵亚鹏,刘佳棋. 泥质粉砂型能源土的三轴剪切试验研究. 宁夏大学学报(自然科学版). 2021(02): 141-147 . 百度学术
    15. 陈晓飞,吴建翔,李园. 应力路径对饱和砂土动力特性影响的试验研究. 工程技术研究. 2021(12): 6-8 . 百度学术
    16. 李雪,曾毓燕,郁飞,施刚. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报. 2021(06): 998-1010 . 百度学术
    17. 胡再强,郭婧,梁志超,王凯,冯哲,陈振鹏. 黏粒含量对细粒尾矿物理力学性质的影响. 岩土工程学报. 2020(S1): 16-21 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 31
出版历程
  • 收稿日期:  2019-04-27
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回