• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

改进DE-TMCMC法及其在高级模型参数识别上的应用

程马遥, 金银富, 尹振宇, 吴则祥

程马遥, 金银富, 尹振宇, 吴则祥. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013
引用本文: 程马遥, 金银富, 尹振宇, 吴则祥. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013
CHENG Ma-yao, JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang. Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013
Citation: CHENG Ma-yao, JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang. Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013

改进DE-TMCMC法及其在高级模型参数识别上的应用  English Version

基金项目: 国家自然科学基金面上基金项目(51579179)
详细信息
    作者简介:

    程马遥(1988— ),女,讲师,博士,主要从事土体细观力学与本构等方面的教学和科研。E-mail: chengmayao@163.com。

    通讯作者:

    尹振宇,E-mail:zhenyu.yin@polyu.edu.hk

  • 中图分类号: TU43

Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model

  • 摘要: 目前基于贝叶斯结合马尔可夫链蒙特卡罗(MCMC)的参数识别方法仅在某些传统的简单本构模型的参数识别上得到了验证。鉴于此,提出了一种效率更高的基于差分进化算法的过渡马尔可夫链蒙特卡罗方法(DE-TMCMC),并基于此提出了一种高效的贝叶斯参数识别方法,应用于高级土体本构模型的参数识别。为了验证其稳健性和有效性,选取丰浦砂的常规室内试验结果作为目标试验来识别考虑临界状态的砂土本构模型的参数。通过对比原始TMCMC方法在参数识别上的表现,突显了DE-TMCMC在识别砂土高级本构模型参数方面的能力。
    Abstract: The parameter identification using Bayesian approach with Markov chain Monte Carlo (MCMC) has been verified only for certain conventional simple constitutive models up to now. An enhanced version of the differential evolution transitional Markov chain Monte Carlo (DE-TMCMC) method and a competitive Bayesian parameter identification approach for use in advanced soil models are presented. The DE-TMCMC, enhanced through implementing a differential evolution into TMCMC to replace the process of proposing a new sample, is proposed. To verify its robustness and effectiveness, the triaxial tests on Toyoura sand are selected as objectives to identify the parameters of the critical state-based sand model SIMSAND. The original TMCMC is also used as a reference to compare the results of DE-TMCMC, which indicates that the DE-TMCMC is highly robust and efficient in identifying the parameters of advanced soil models. All the results demonstrate the excellent ability of the enhanced Bayesian parameter identification approach in identifying the parameters of advanced soil models from both laboratory and in situ tests.
  • [1] JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang, et al.Numerical modeling of pile penetration in silica sands considering the effect of grain breakage[J]. Finite Elements in Analysis and Design, 2018, 144: 15-29.
    [2] JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang, et al.Identifying parameters of easily crushable sand and application to offshore pile driving[J]. Ocean Engineering, 2018, 154: 416-429.
    [3] YIN Zhen-yu, JIN Yin-fu, SHEN Shui-long, et al.Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(1): 70-94.
    [4] 田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11): 3355-3362.
    (TIAN Mi, LI Dian-qing, CAO Zi-jun, et al.Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11): 3355-3362. (in Chinese))
    [5] 付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329.
    (FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, et al.Inversion of multimode Rayleigh-wave dipersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese))
    [6] 郑俊杰, 徐志军, 刘勇, 等. 基桩抗力系数的贝叶斯优化估计[J]. 岩土工程学报, 2012, 34(9): 1716-1721.
    (ZHENG Jun-jie, XU Zhi-jun, LIU Yong, et al.Bayesian optimization for resistance factor of piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1716-1721. (in Chinese))
    [7] 陈斌, 刘宁, 卓家寿. 岩土工程反分析的扩展贝叶斯法[J]. 岩石力学与工程学报, 2004, 23(4): 555-560.
    (CHEN Bin, LIU Ning, ZHUO Jia-shou.Extended bayesian method of inverse analysis in geoengineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 555-560. (in Chinese))
    [8] JIN Yin-fu, WU Ze-xiang, YIN Zhen-yu, et al.Estimation of critical state-related formula in advanced constitutive modeling of granular material[J]. Acta Geotechnica, 2017, 12(6): 1329-1351.
    [9] JIN Yin-fu, YIN Zhen-yu, SHEN Shui-long, et al.Selection of sand models and identification of parameters using an enhanced genetic algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(8): 1219-1240.
    [10] YUEN Ka-veng.Bayesian methods for structural dynamics and civil engineering[M]. Clementi Loop: John Wiley & Sons, 2010.
    [11] YUSUKE Honjo, LIU Wen-Tsung, SOUMITRA Guha.Inverse analysis of an embankment on soft clay by extended Bayesian method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(10): 709-734.
    [12] THOMAS Most.Identification of the parameters of complex constitutive models: least squares minimization vs Bayesian updating[M]// Reliability and Optimization of Structural Systems, CRC Press, 2010: 119.
    [13] MIRO S, KÖNIG M, HARTMANN D, et al. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study[J]. Computers and Geotechnics, 2015, 68: 38-53.
    [14] KEITH Hastings W.Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109.
    [15] LEE Se-Hyeok, SONG Jun-ho.System identification of spatial distribution of structural parameters using modified transitional Markov chain monte carlo method[J]. Journal of Engineering Mechanics, 2017, 143(9): 04017099.
    [16] PANAGIOTIS Angelikopoulos, COSTAS Papadimitriou, PETROS Koumoutsakos.X-TMCMC: adaptive kriging for Bayesian inverse modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 409-428.
    [17] ORTIZ Gilberto A, ALVAREZ Diego A, BEDOYA-Ruíz Daniel.Identification of Bouc-Wen type models using the transitional Markov chain Monte Carlo method[J]. Computers & Structures, 2015, 146: 252-269.
    [18] WOLFGANG Betz, IASON Papaioannou, DANIEL Straub.Transitional Markov chain Monte Carlo: observations and improvements[J]. Journal of Engineering Mechanics, 2016, 142(5): 04016016.
    [19] CHING Jian-ye, CHEN Yi-chu.Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7): 816-832.
    [20] VRUGT Jasper A.Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation[J]. Environmental Modelling & Software, 2016, 75: 273-316.
    [21] VERDUGO Ramon, ISHIHARA Kenji.The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
    [22] TAIEBAT Mahdi, DAFALIAS Yannis F.SANISAND: simple anisotropic sand plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 915-948.
  • 期刊类型引用(29)

    1. 马乐,李云,陈晨文. 上软下硬地层CSM整体式止水帷幕施工关键技术. 施工技术(中英文). 2024(11): 97-102 . 百度学术
    2. 陈伟. 复杂富水地层地铁深大基坑渗漏治理技术研究. 施工技术(中英文). 2024(13): 109-114 . 百度学术
    3. 孙立光,朱颖,时刚,王瑜,刘攀,郜新军,朱超杰. 饱和地基中劲芯水泥土墙隔振的二维BEM-FEM耦合分析. 世界地震工程. 2024(04): 164-178 . 百度学术
    4. 任路,秦超,向虎,杨天成,李荣华. 武汉某高层建筑深基坑设计与施工. 施工技术(中英文). 2023(01): 119-124 . 百度学术
    5. 代兴云,应卫超,孙海明. 深基坑承压水组合式处理措施的研究及应用. 城市道桥与防洪. 2023(01): 178-182+23 . 百度学术
    6. 刘树佳. 上海地区特深圆形竖井开挖承压水控制技术及效果. 水资源与水工程学报. 2023(01): 127-134 . 百度学术
    7. 魏斌,刘长斌,康建国,刘畅,杨宇航. 富水软土地区超深基坑CSM施工技术研究. 建筑施工. 2023(01): 18-21 . 百度学术
    8. 刘鹭. 双轮铣深层搅拌工法在复杂城市地下空间开发的应用研究. 福建建设科技. 2023(03): 41-44 . 百度学术
    9. 李成巍,李伟,梁志荣. 紧临越江隧道软土地层深大基坑工程设计与实践. 福建建设科技. 2023(03): 37-40 . 百度学术
    10. 古伟斌,蔡强,郭佰良. CSM双轮铣搅墙特点及其在基坑支护止水帷幕的应用. 广东土木与建筑. 2023(05): 83-86 . 百度学术
    11. 黄开勇,梁志荣,魏祥. 双排型钢等厚水泥土墙在深大基坑中的应用分析. 建筑结构. 2023(S1): 2902-2907 . 百度学术
    12. 王川. 深厚粉细砂地层深搅铣形成防渗墙施工分析. 工程技术研究. 2023(11): 57-59 . 百度学术
    13. 董晓斌,苏定立,胡贺松,李翔,唐孟雄,谢丁,谢小荣. 基于CSM工法的止水帷幕施工技术及设备研究现状. 广州建筑. 2023(06): 55-58 . 百度学术
    14. 郭建飞. 复杂环境下深基坑围护设计施工方法研究. 建设科技. 2022(11): 102-104 . 百度学术
    15. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 . 百度学术
    16. 尤田,郭佳嘉. 超深锚碇基础SMC工法槽壁力学性能研究. 世界桥梁. 2022(06): 80-85 . 百度学术
    17. 张芳,韩林芳,赵怡琳,桑运龙,刘学增,高尚,杨研. 富水地区深基坑封底榫槽关键参数研究. 隧道建设(中英文). 2022(11): 1913-1920 . 百度学术
    18. 魏祥,梁志荣,罗玉珊. 软土地区临江深大基坑工程地下水综合控制技术实践. 上海国土资源. 2022(04): 39-43+66 . 百度学术
    19. 李万全,刘德港,田万君,李永贺. 提高水泥土搅拌墙在岩溶地质中入岩速率的研究. 建筑技术开发. 2022(24): 123-125 . 百度学术
    20. 李汉龙,李学军,曾开华,崔猛,刘海林. CSM工法在深厚饱和砂土地基的现场试验研究. 南昌工程学院学报. 2021(01): 45-50 . 百度学术
    21. 李新,黄健,樊海元,陶金海,李昊雨,杨凡林. 复杂场地条件下深基坑围护技术及工程应用研究. 工程建设与设计. 2021(13): 36-38+47 . 百度学术
    22. 丁昊. TRD工法和CSM工法在上海地区超深基坑工程止水帷幕的应用. 上海建设科技. 2021(04): 49-50+53 . 百度学术
    23. 邵勇,李光诚,帅红岩,张玉山. 超深止水帷幕在武汉长江Ⅰ级阶地冲积相基坑支护工程中的选取和应用. 资源环境与工程. 2021(06): 882-886 . 百度学术
    24. 李雄威,何亮,黄开林,秦羽. 承压水条件下基坑抗突涌安全措施分析. 土工基础. 2020(05): 602-606+611 . 百度学术
    25. 蔡忠祥,岳建勇,胡耘. CSM工法等厚度水泥土搅拌墙在紧邻既有建筑深基坑工程中的应用. 四川建筑科学研究. 2020(S1): 32-40 . 百度学术
    26. 冯晓腊,崔德山,熊宗海,莫云. 武汉软土地层特点及深基坑降水研究新进展. 四川建筑科学研究. 2020(S1): 9-17 . 百度学术
    27. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 . 百度学术
    28. 刘动. 深圳地区深基坑开挖地下水控制研究. 勘察科学技术. 2020(06): 43-48 . 百度学术
    29. 陈佳培,唐力. CSM等厚度水泥土搅拌墙在长江漫滩地质上的应用. 河南科技. 2019(28): 83-85 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  310
  • HTML全文浏览量:  7
  • PDF下载量:  139
  • 被引次数: 33
出版历程
  • 收稿日期:  2018-07-25
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回