• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于非连续面拓扑优化技术的块体结构体系稳定性分析方法

黄齐武

黄齐武. 基于非连续面拓扑优化技术的块体结构体系稳定性分析方法[J]. 岩土工程学报, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008
引用本文: 黄齐武. 基于非连续面拓扑优化技术的块体结构体系稳定性分析方法[J]. 岩土工程学报, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008
HUANG Qi-wu. Stability analysis of blocky system structures based on discontinuity layout optimization technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008
Citation: HUANG Qi-wu. Stability analysis of blocky system structures based on discontinuity layout optimization technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008

基于非连续面拓扑优化技术的块体结构体系稳定性分析方法  English Version

基金项目: 国家自然科学基金青年基金项目(41202219); 北京市重点实验室资助项目(SCJJ2018005)
详细信息
    作者简介:

    黄齐武(1979— ),男,高级工程师,博士,主要从事城市轨道交通岩土工程技术和数值方法研究。E-mail:richardhuangqw@163.com。

  • 中图分类号: TU43

Stability analysis of blocky system structures based on discontinuity layout optimization technique

  • 摘要: 计算块体结构体系的极限荷载和确定其相应的临界破坏模式是实际工程中的一项重要任务。非连续面拓扑优化技术(DLO)基于严谨塑性理论的速度非连续面(能量耗散)和优化理论从大量的潜在非连续面集中确定非连续面的临界布局,从而构成临界破坏模式。DLO程序利用栅格点阵进行离散,节点间连线为潜在滑移面或速度跳跃的非连续面。相容性通过直接检验节点运动变量的线性方程来实现。最终的目标函数为速度变量的线性函数,依据所有非连续面的平动和转动总耗散能量建立。为提高计算效率,在传统基结构的基础上,提出考虑杆件激活和冗余删除的自适应节点连接算法。虽然优化解受离散节点初始位置的影响,但通过细分栅格节点,节点的确切位置将对优化解的影响相对较小。与相关文献的基准问题和算例进行比对,验证DLO方法的应用潜力。研究表明,改进的自适应节点连接算法,可应用处理常规的块体结构稳定性问题,不仅极大地提高了计算效率,而且避免数值计算的持续振荡。
    Abstract: Computing the collapse loads and identifying the associated mechanism of block assemblage structures is an important task in practical engineering. The discontinuity layout optimization (DLO) is proposed entirely based on velocity discontinuities with rigorous plasticity theory, which the optimization uses to determine the critical arrangement of the discontinuities from a large set of potential discontinuities. In DLO procedure, the initial problem is discretized using the nodes distributed across the body under consideration. The potential discontinuity lines or slip lines along which jumps in rate of displacement are created by linking each node to every other node. Compatibility can be straightforwardly checked at each node by a simple linear equation involving movement variables. Finally an objective function may be defined based on the total energy dissipated due to translation along all discontinuities, a linear function of the velocity variables. In order to improve the performance of the classical ground structure approach, the adaptive member refinement (adaptive nodal connection procedure) considers both deletion and addition of members in the iterative process. Although the solution will be influenced somewhat by the starting position of the nodes, when fine nodal refinement is used, the exact positions of individual nodes will have relatively little influence on the solution generated. The procedure is applied to the problems from the literature and also to new benchmark problems including masonry walls and jointed rock slopes so as to illustrate potentialities of the method. The results show that the proposed adaptive member refinement algorithm can deal with the stability analysis of practical blocky structures and avoid oscillating between two different solutions at successive iterations with the results that the optimization efficiency is improved significantly.
  • [1] LIVESLEY R K.Limit analysis of structures formed from rigid blocks[J]. International Journal of Numerical Methods in Engineering, 1978, 12: 1853-1871.
    [2] LIVESLEY R K.A computational model for the limit analysis of three-dimensional masonry structures[J]. Meccanica, 1992, 27(3):161-172.
    [3] BOOTHBY T E, BROWN C B.Stability of masonry piers and arches[J]. Journal of Engineering Mechanics, 1992, 118(2): 367-383.
    [4] BOOTHBY T E.Stability of masonry piers and arches including sliding[J]. Journal of Engineering Mechanics, 1994, 120(2): 304-319.
    [5] GILBERT M, MELBOURNE C.Rigid-block analysis of masonry structures[J]. Structural Engineer, 1994, 72(21): 356-361.
    [6] MELBOURNE C, GILBERT M.The behaviour of multi-ring brickwork arch bridges[J]. Structural Engineer, 1995, 73(3): 39-47.
    [7] BAGGIO C, TROVALUSCI P.Limit analysis for no-tension and frictional three-dimensional discrete systems[J]. Mechanics of Structures and Machines, 1998, 26(3): 287-304.
    [8] BAGGIO C, TROVALUSCI P.Collapse behaviour of three-dimensional brick-block systems using non-linear programming[J]. Structural Engineering and Mechanics, 2000, 10(2): 181-195.
    [9] FERRIS M, TIN-LOI F.Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints[J]. International Journal of Mechanics Sciences, 2001, 43(1): 209-224.
    [10] ORDUÑA A, LOURENÇO P B. Three-dimensional limit analysis of rigid blocks assemblages: Part I torsion failure on frictional joints and limit analysis formulation[J]. International Journal of Solids and Structures, 2005, 42(18/19): 5140-5160.
    [11] ORDUÑA A, LOURENÇO P B. Three-dimensional limit analysis of rigid blocks assemblages: Part II load-path following solution procedure and validation[J]. International Journal of Solids and Structures, 2005, 42(18/19): 5161-5180.
    [12] LYSMER J.Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(4): 1311-1334.
    [13] SLOAN S W, KLEEMAN P W.Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127(1/2/3/4): 293-314.
    [14] MAKRODIMOPOULOS A, MARTIN C M.Lower bound limit analysis of cohesive-frictional materials using second- order cone programming[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 604-634.
    [15] CHRISTIANSEN E, PEDERSEN O S.Automatic mesh refinement in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2001, 50: 1331-1346.
    [16] BORGES L A, ZOUAIN N, COSTA C, et al.An adaptive approach to limit analysis[J]. International Journal of Solids and Structures, 2001, 38(10/11/12/13): 1707-1720.
    [17] FRANCO J R Q, PONTER A R S, BARROS F B. Adaptive FE method for the shakedown and limit analysis of pressure vessels[J]. European Journal Mechanics A-Solids, 2003, 22(4): 525-533.
    [18] LYAMIN A V, SLOAN S W.Mesh generation for lower bound limit analysis[J]. Advances in Engineering Software, 2003, 34(6): 321-338.
    [19] CIRIA H, PERAIRE J, BONET J.Mesh adaptive computation of upper and lower bounds in limit analysis[J]. International Journal of Numerical Methods in Engineering, 2008, 75: 899-944.
    [20] SMITH C, GILBERT M.Application of discontinuity layout optimization to plane plasticity problems[J]. Proceedings the Royal of Society: A Mathematical, Physical and Engineering Sciences, 2007, 463: 2461-2484.
    [21] DORN W S, GOMORY R E, GREENBERG H J.Automatic design of optimal structures[J]. Journal de Mechanique, 1964, 3(1): 25-52.
    [22] GILBERT M, TYAS A.Layout optimisation of large-scale pin-jointed frames[J]. Engineering Computations 2003, 20(8): 1044-1064.
    [23] HUANG Q, JIA C, XIA B, et al. Novel computational implementations for stability analysis[J]. Applied Mechanics and Materials2011, 90/91/92/93: 778-785.
    [24] GILBERT M, CASAPULLA C, AHMED H M.Limit analysis of masonry block structures with non-associative frictional joints using linear programming[J]. Computers and Structures, 2006, 84(13/14): 873-887.
    [25] ZHANG K, CAO P, MA G, et al.Stability analysis of rock slope controlled by major geological discontinuities based on the extended kinematical element method[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2967-2975.
    [26] 孙平, 陈玺, 王玉杰. 边坡稳定极限分析斜条分上限法的全局优化方法[J]. 水利学报, 2018, 49(6): 741-748.
    (SUN Ping, CHEN Xi, WANG Yu-jie.A global optimization algorithm of upper bound method with inclined interface blocks for slope stability[J]. Journal of Hydraulic Engineering, 2018, 49(6): 741-748. (in Chinese))
  • 期刊类型引用(17)

    1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
    2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
    3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
    4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
    5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
    6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
    7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
    8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
    9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
    10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
    11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
    12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
    13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
    14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
    15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
    16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
    17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数:  276
  • HTML全文浏览量:  4
  • PDF下载量:  165
  • 被引次数: 34
出版历程
  • 收稿日期:  2018-11-22
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回