• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于零厚度黏聚力单元节理面剪切破坏机理宏细观研究

王刚, 张书博, 连莲, 赵程, 王珂, 张贤达

王刚, 张书博, 连莲, 赵程, 王珂, 张贤达. 基于零厚度黏聚力单元节理面剪切破坏机理宏细观研究[J]. 岩土工程学报, 2019, 41(12): 2224-2232. DOI: 10.11779/CJGE201912007
引用本文: 王刚, 张书博, 连莲, 赵程, 王珂, 张贤达. 基于零厚度黏聚力单元节理面剪切破坏机理宏细观研究[J]. 岩土工程学报, 2019, 41(12): 2224-2232. DOI: 10.11779/CJGE201912007
WANG Gang, ZHANG Shu-bo, LIAN Lian, ZHAO Cheng, WANG Ke, ZHANG Xian-da. Macro-micro study on shear failure mechanism of rock joint based on zero-thickness cohesive element[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2224-2232. DOI: 10.11779/CJGE201912007
Citation: WANG Gang, ZHANG Shu-bo, LIAN Lian, ZHAO Cheng, WANG Ke, ZHANG Xian-da. Macro-micro study on shear failure mechanism of rock joint based on zero-thickness cohesive element[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2224-2232. DOI: 10.11779/CJGE201912007

基于零厚度黏聚力单元节理面剪切破坏机理宏细观研究  English Version

基金项目: 国家自然科学基金面上项目(51479108,51379117)
详细信息
    作者简介:

    王 刚(1976— ),男,山东阳谷人,教授,博士研究生导师,工学博士,主要从事岩石力学与工程方面的科研与教学工作。E-mail:wanggang1110@gmail.com。

  • 中图分类号: TU451

Macro-micro study on shear failure mechanism of rock joint based on zero-thickness cohesive element

  • 摘要: 为了探究不同粗糙度节理岩体剪切过程及破坏类型,利用ABAQUS有限元分析软件,采用全局嵌入零厚度黏聚力单元的方法模拟带节理岩体压剪过程。通过室内压剪试验和数值模拟结果对比确定所建立模型的正确性,从宏细观角度分析节理岩体剪切破坏行为。研究结果表明:采取全局嵌入零厚度黏聚力单元模拟节理岩体压剪过程的方法相对准确,能真实反映节理面细观破坏过程;不同粗糙度节理试样在恒定法向荷载下的剪切峰值强度随着粗糙度增加而递增;节理岩体的剪切过程大致可以分为4个阶段,线弹性强化阶段、带裂纹强化阶段、塑性软化阶段和残余强度阶段;不同粗糙度节理岩体在剪切过程中破坏类型不同,在恒定法向荷载下岩体剪切破坏大致可以分为3种形式,分别是滑移破坏,岩体局部剪断破坏和切齿破坏。
    Abstract: In order to explore their shear process and failure types with different roughnesses, the ABAQUS finite element analysis software is used to simulate the shearing process of jointed rock masses under constant normal load by using the method of globally embedded zero-thickness cohesion elements. The correctness of the numerical model is confirmed by comparing the results of laboratory shear tests and numerical simulations, and the shear failure behavior of the jointed rock masses is analyzed from the macro-micro perspective. The results show that the method of global embedded zero-thickness cohesive elements to simulate the shear process of jointed rock masses is accurate and can truly reflect the microscopic process of rock joint failure. The shear peak strength of joint samples with different roughnesses increases with the roughness under constant normal load. The shear process of jointed rock masses can be divided into four stages: linearly elastic strengthening stage, crack strengthening stage, plastic softening stage and residual strength stage. The joints of rock masses with different roughnesses have different types of failure during the shearing process, and the shear failure of rock masses can be roughly divided into three types under the constant normal load, which are slip failure, local shear failure and gear cutting failure.
  • [1] SINGH H K, BASU A.A comparison between the shear behavior of ‘real’ natural rock discontinuities and their replicas[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 329-340.
    [2] NIKTABAR S M M, RAO K S, SHRIVASTAVA A K. Effect of rock joint roughness on its cyclic shear behavior[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1071-1084.
    [3] LI L P, CHEN D Y, LI S C, et al.Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush[J]. Geomechanics and Engineering, 2017, 13(6): 1011-1025.
    [4] 李利平, 李术才, 赵勇, 等. 超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2012, 31(3): 550-560.
    (LI Li-ping, LI Shu-cai, ZHAO Yong, et al.3d geomechanical model for progressive failure progress of weak broken surrounding rock in super large section tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 550-560. (in Chinese))
    [5] WANG G, HAN W, JIANG Y, et al.Coupling analysis for rock mass supported with CMC or CFC rockbolts based on viscoelastic method[J]. Rock Mechanics and Rock Engineering. 2019, 52(11): 4565-4588.
    [6] BARTON N.The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54.
    [7] GOODMAN R E.Methods of geological engineering in discontinuous rocks[M]. West Pub. Co, 1976.
    [8] DIGHT P M, CHIU H K.Prediction of shear behaviour of joints using profiles[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1981, 18(5): 369-386.
    [9] JIANG Y, XIAO J, TANABASHI Y, et al.Development of an automated servo-controlled shear apparatus applying a constant normal stiffness condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 275-286.
    [10] JIANG Y, LI B, TANABASHI Y.Estimating the relation between surface roughness and mechanical properties of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 837-846.
    [11] SELVADURAI A P S,YU Q. Mechanics of a discontinuity in a geomaterial[J]. Computers and Geotechnics, 2005, 32(2): 92-106.
    [12] LOCKNER D A, BYERLEE J D, KUKSENKO V, et al.Quasi-static fault growth and shear fracture energy in granite[J]. Nature, 1991, 350: 39-42.
    [13] LIU H, ZHANG L.A damage constitutive model for rock mass with nonpersistently closed joints under uniaxial compression[J]. Arabian Journal for Science and Engineering, 2015, 40(11): 3107-3117.
    [14] 夏才初, 宋应龙, 唐志成, 等. 粗糙节理剪切性质的颗粒流数值模拟[J]. 岩石力学与工程学报, 2012, 31(8): 1545-1552.
    (XIA Cai-chu, SONG Ying-long, TANG Zhi-cheng, et al.Particle flow numerical simulation for shear behavior of rough joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1545-1552. (in Chinese))
    [15] 周喻, MISRA A, 吴顺川, 等. 岩石节理直剪试验颗粒流宏细观分析[J]. 岩石力学与工程学报, 2012, 31(6): 1245-1256.
    (ZHOU Yu, MISRA A, WU Shun-chuan, et al.Macro-and meso-analyses of rock joint direct shear test using particle flow theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1245-1256. (in Chinese))
    [16] ASADI M S, RASOULI V, BARLA G.A bonded particle model simulation of shear strength and asperity degradation for rough rock fracture[J]. Rock Mechanics and Rock Engineering, 2012, 45: 649-675.
    [17] WANG G, ZHANG Y Z, JIANG Y J, et al.Macro-micro failure mechanisms and damage modeling of a bolted rock joint[J]. Advances in Materials Science and Engineering, 2017(5): 1-15.
    [18] FAN L F, WU Z J, WAN Z, et al.Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering, 2017, 125: 94-103.
    [19] DUGDALE D S.Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8: 100-108.
    [20] BARRENBLATT G I.The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-125.
    [21] YANG Z J,SU X T, CHEN J F, et al.Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasibrittle materials[J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.
    [22] 吴志军, 张鹏林, 刘泉声, 等. 基于零厚度黏聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(08): 79-91.
    (WU Zhi-jun, ZHANG Peng-lin, LIU Quan-sheng, et al.Dynamic failure analysis of reinforced concrete slab based on cohesive element under explosive load[J]. Engineering Mechanics, 2018, 35(8): 79-91. (in Chinese))
    [23] SU X T, YANG Z J, LIU G H.Monte carlo simulation of complex cohesive fracture in random heterogeneous quasibrittle materials: a 3d study[J]. International Journal of Solids and Structures, 2010, 47(17): 2336-2345.
    [24] 徐海滨, 杜修力, 杨贞军. 基于预插黏性界面单元的Koyna重力坝强震破坏过程分析[J]. 振动与冲击, 2014, 33(17): 74-79.
    (XU Hai-bin, DU Xiu-li, YANG Zhen-jun.Seismic failure analysis of Koyna gravity dam using cohesive interface elements[J]. Journal of Vibration and Shock, 2014, 33(17): 74-79. (in Chinese))
    [25] JIANG H X, MENG D G.3D numerical modelling of rock fracture with a hybrid finite and cohesive element method[J]. Engineering Fracture Mechanics, 2018, 199: 280-293.
    [26] JING L, STEPHANSSON O, NORDLUND E.Study of rock joints under cyclic loading conditions[J]. Rock Mechanics and Rock Engineering, 1993, 26(3): 215-232.
    [27] 孙广忠. 岩体结构力学[M]. 北京: 科学出版社, 1983.
    (SUN Guang-zhong.Foundation of rock mechanic[M]. Beijing: Science Press, 1983. (in Chinese))
  • 期刊类型引用(11)

    1. 邢玮,朱锐,张晨,王羿,周峰. 高寒地区供水渠道水热特征及其长期演化规律. 南京工业大学学报(自然科学版). 2024(01): 93-102 . 百度学术
    2. 柴石玉,张凌凯. 干湿-冻融循环对碱激发粉煤灰-矿粉改性膨胀土力学特性的损伤机理研究. 工程力学. 2024(11): 157-167 . 百度学术
    3. 张晨,陈红永,王羿,蔡正银. 寒区工程离心模型试验地基表面换热特性及热边界设置方法研究. 水利学报. 2023(06): 729-738 . 百度学术
    4. 凌松耀,蹇永明,张智勇,李卓,黄翀垚,郭兴会,张奇. 融雪-降雨型滑坡失稳机理. 科学技术与工程. 2023(21): 8980-8987 . 百度学术
    5. 蔡正银,朱洵,张晨,黄英豪. 高寒区膨胀土渠道边坡性能演变规律. 中南大学学报(自然科学版). 2022(01): 21-50 . 百度学术
    6. 朱锐,郭万里. 寒区渠道粉土质砂换填料力学特性试验研究. 中南大学学报(自然科学版). 2022(04): 1461-1471 . 百度学术
    7. 蔡正银,张晨,朱洵,黄英豪,王羿. 高寒区长距离供水工程能力提升与安全保障技术. 岩土工程学报. 2022(07): 1239-1254 . 本站查看
    8. 李燕,王斯海,朱锐. 复杂边界条件下膨胀土的体变特性与抗压强度研究. 水利水运工程学报. 2022(04): 106-113 . 百度学术
    9. 朱锐,蔡正银,黄英豪,张晨,郭万里,朱洵. 湿干冻融循环下渠水入渗特性的离心模型试验和现场试验研究(英文). Journal of Central South University. 2021(05): 1519-1533 . 百度学术
    10. 朱锐,蔡正银,黄英豪,张晨,郭万里. 冻融过程对高寒区渠道基土力学特性的影响. 农业工程学报. 2021(14): 108-116 . 百度学术
    11. 陈永,黄英豪,朱洵,吴敏,王硕,朱锐. 冻融循环对膨胀土变形和力学特性的影响研究. 水利水运工程学报. 2021(05): 112-119 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  349
  • HTML全文浏览量:  13
  • PDF下载量:  285
  • 被引次数: 19
出版历程
  • 收稿日期:  2019-03-18
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回