• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

海底盾构隧道纵向地震反应特征的子模型分析

陈国兴, 孙瑞瑞, 赵丁凤, 阮滨

陈国兴, 孙瑞瑞, 赵丁凤, 阮滨. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 2019, 41(11): 1983-1991. DOI: 10.11779/CJGE201911002
引用本文: 陈国兴, 孙瑞瑞, 赵丁凤, 阮滨. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 2019, 41(11): 1983-1991. DOI: 10.11779/CJGE201911002
CHEN Guo-xing, SUN Rui-rui, ZHAO Ding-feng, RUAN Bin. Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983-1991. DOI: 10.11779/CJGE201911002
Citation: CHEN Guo-xing, SUN Rui-rui, ZHAO Ding-feng, RUAN Bin. Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983-1991. DOI: 10.11779/CJGE201911002

海底盾构隧道纵向地震反应特征的子模型分析  English Version

基金项目: 国家自然科学基金项目(51438004)
详细信息
    作者简介:

    陈国兴(1963— ),男,浙江新昌人,教授,主要从事土动力学与岩土地震工程研究。E-mail: gxc6307@163.com。

  • 中图分类号: TU435;U452

Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis

  • 摘要: 考虑海床土体的空间不均匀性、动力非线性特性和海底盾构隧道管环间纵向螺栓连接等因素,提出了基于子模型技术的长大隧道纵向地震反应广义反应位移法,研究了不同地震动作用下隧道管环间的张开量和地震应力分布特征。结果表明:①基于子模型技术的广义反应位移法建模简单,能合理地考虑土与隧道结构的动力相互作用效应对长大隧道结构纵向地震反应的影响;采用压力-过盈模型和黏结模型表征管环间纵向连接螺栓的作用,可较合理地描述相邻管环间的非连续变形特性。②隧道穿越软硬土层交界处的管环张开量较大;基岩峰值加速度相同时,低频发育的Darfield地震动作用引起的管环张开量明显较之高频发育的Iwate地震动作用时的大,且基岩峰值加速度为0.2g和0.4g的Darfield地震动作用下局部位置的管环间张开量超过防水允许限值。③不同频谱特性的基岩地震动作用下管环地震应力分布差异较大,Iwate地震动作用时基岩隆起区域靠近管环顶部处的地震应力较大;Darfield地震动作用时隧道穿越软硬土层交界处及砂土透镜体附近的管环地震应力较大。
    Abstract: Considering the spatial inhomogeneity and dynamic nonlinearity of seabed soil and longitudinal bolt connection at the seabed shield tunnel intersegments, a new approach coupling the generalized response displacement method and submodeling technique is proposed to analyze the longitudinal seismic response of long and large-scale seabed tunnels. The opening widths at the ring intersegments and the seismic stress distribution characteristics of segments under different bedrock motions are given. The results show that: (1) The modeling of the proposed new approach is simple, and it can reasonably consider the effects of dynamic interaction between soil and tunnel on the longitudinal seismic response of long and large-scale shield tunnels. The pressure-overclosure model and surface-based cohesive behavior are used to characterize the influences of the bolted intersegmental joints, which can reasonably describe the discontinuous deformation characteristics between adjacent ring segments. (2) The opening widths of intersegments are larger in the transition zone of soft and hard soils; under the same peak accelerations of bedrock motions, the opening widths of intersegments caused by Darfield seismic records with rich low frequency components are larger than those caused by Iwate seismic records with rich high frequency components, and the opening widths of intersegments at some local locations exceed the allowable limit of waterproofing for Darfield seismic records with the peak accelerations of 0.2g and 0.4g. (3) The seismic stress distribution of segments varies greatly under different bedrock motions. The seismic stresses of segments in the upheaval zone of bedrock and near the top of the ring segments are larger for Iwate seismic records, and those in the transition zone of soft and hard soils and near sandy soil lenses are larger for Darfield seismic records.
  • [1] OKAMOTO S, TAMUTA C, KATO K, et al.Behaviors of submerged tunnels during earthquakes[C]// Proceedings of the Fifth World Conference on Earthquake Engineering. Rome, Italy, 1973: 544-553.
    [2] KAWASHIMA K.Seismic design of underground structures in soft ground: a review[C]// Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions. Tokyo, Japan, 1999.
    [3] OWEN G N, SCHOLL R E.Earthquake engineering of large underground structures[R]. Washington D C: Federal Highway Administration and National Science Foundation, 1981.
    [4] HASHASH Y M A, TSENG W S, KRIMOTAT A. Seismic soil-structure interaction analysis for immersed tube tunnels retrofit[J]. Geotechnical Special Publication, 1998, 2(75): 1380-1391.
    [5] YU Hai-tao, YUAN Yong, QIAO Zong-zhao, et al.Seismic analysis of a long tunnel based on multi-scale method. Engineering Structures 2013, 49: 572-587.
    [6] 赵慧岭, 柳献, 袁勇, 等. 软土隧道长期沉降的纵向作用效应研究[J]. 特种结构, 2008(1): 79-84.
    (ZHAO Hui-ling, LIU Xian, YUAN Yong, et al.Effect of long-term settlement on longitudinal mechanical performance of tunnel in soft soil[J]. Special Structures, 2008(1): 79-84. (in Chinese))
    [7] 邵润萌, 雷扬. 基于反应位移法的盾构隧道纵向抗震分析[J]. 土木工程学报, 2013, 46(增刊2): 260-265.
    (SHAO Run-meng, LEI Yang.Longitudinal anti-seismic analysis of shield tunnel based on response deformation method[J]. China Civil Engineering Journal, 2013, 46(S2): 260-265. (in Chinese))
    [8] YU Hai-tao, CAI Chuang, BOBET A, et al.Analytical solution for longitudinal bending stiffness of shield tunnels[J]. Tunnelling and Underground Space Technology, 2019: 27-34.
    [9] ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al.Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067-1090.
    [10] CHEN Guo-xing, RUAN Bin, ZHAO Kai, et al.Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions[J]. Journal of Earthquake Engineering, 2018: 1-30.
    [11] ZHOU Shun-hua, HE Chao, GUO Pei-jun, et al.Dynamic response of a segmented tunnel in saturated soil using a 2.5-D FE-BE methodology[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 386-397.
    [12] ZHANG Jing, HE Chuan, GENG Ping, et al.Improved longitudinal seismic deformation method of shield tunnels based on the iteration of the nonlinear stiffness of ring joints[J]. Sustainable Cities and Society, 2019: 105-116.
    [13] MIAO Yu, YAO ER-lei, RUAN Bin, et al.Seismic response of shield tunnel subjected to spatially varying earthquake ground motions[J]. Tunnelling and Underground Space Technology, 2018, 77: 216-226.
    [14] Dassault Systèmes Simulia Incorporation. Abaqus analysis user’s manual (Version 6.10) [R]. Rhode Island: Providence, 2010.
    [15] 刘晶波, 王文晖, 赵冬冬, 等. 地下结构抗震分析的整体式反应位移法[J]. 岩石力学与工程学报, 2013, 32(8): 1618-1624.
    (LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al.Integral response deformation method for seismic analysis of underground structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1618-1624. (in Chinese))
    [16] 刘晶波, 王东洋, 谭辉, 等. 隧道纵向地震反应分析的整体式反应位移法[J]. 工程力学, 2018, 35(10): 17-26.
    (LIU Jing-bo, WANG Dong-yang, TAN Hui, et al.Integral response displacement method for longitudinal seismic response analysis of tunnel structure[J]. Engineering Mechanics, 2018, 35(10): 17-26. (in Chinese))
    [17] 赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J].岩土工程学报, 2017, 39(5): 888-895.
    (ZHAO Ding-feng, RUAN Bin, CHEN Guo-xing, et al.Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese))
  • 期刊类型引用(2)

    1. 杜闯,高启辉,宋帅. 地震波斜入射下港珠澳大桥沉管隧道地震响应分析. 河北工业大学学报. 2024(03): 76-86 . 百度学术
    2. 邓捷程,吕龙,孙海忠,吕玺琳. 基于等效线性土体模型的地基与结构整体地震响应模拟. 结构工程师. 2023(03): 85-91 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  324
  • HTML全文浏览量:  8
  • PDF下载量:  254
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-01-06
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回