Seismic response analysis of lateral uneven sites with soft-hard connected media
-
摘要: 软硬交互横向不均匀场地十分常见,其在强震作用下的地震反应对工程结构的安全有着重要影响,然而目前还很少有针对该场地地震反应分析的研究。基于精确动力刚度矩阵和均布荷载动力格林函数的间接边界元方法,经快速傅里叶逆变换,在时域内求解了层状半空间中软硬交互横向不均匀场地的地震反应问题。求解中将模型分解为含较硬介质的层状半空间域和较软介质域,同时将总波场分解为自由波场和散射波场两部分,通过在相应边界上施加斜线和水平线虚拟均布荷载,进而求解动力格林函数以模拟散射波场,自由波场可由直接刚度法方便求得。验证了方法的正确性,检验了求解模型的收敛性,进而开展了相应的数值计算分析,着重讨论了介质参数和软硬交界面倾角对场地地震反应的影响。研究表明:软硬交互场地中,较大的地表地震动响应发生在较软介质侧;软硬交界面的存在使得场地地表加速度响应发生突变,突变程度受介质参数和交界面倾角的影响显著;随着介质参数差异和交界面倾角的增大,地表加速度峰值增大,反应谱曲线显示短周期成分变得更为丰富,对基岩地震动的放大作用增强;软硬交界面对场地地表地震反应的影响主要在交界面外的两倍介质层厚度范围。Abstract: The lateral uneven site with soft-hard connected media is very common, and its seismic response under strong earthquakes has an important impact on the safety of engineering structures. However, studies have seldom been reported to investigate the seismic response of soft-hard connected sites. Based on the indirect boundary element method combined with the exact dynamic stiffness matrix and Green's functions of uniformly distributed loads, the seismic response of soft-hard connected sites in a layered half-space is solved in time-domain via the fast Fourier inverse transform. In the solution, the model is divided into a harder medium of layered half-space region and a softer medium region, while the wavefield is classified into two parts: free field and scattered field. The diffraction response can be simulated by the Green's function of inclined and horizontal fictitious distributed loads acting on corresponding boundaries, and the free field response can be easily solved by the direct stiffness method. The accuracy of the proposed method is verified, and the convergence of the solution model is tested. Numerical calculations are performed to analyze the influences of medium parameters and soft-hard interface dip angles in the seismic response. The results show that in the soft-hard connected site, the stronger ground motion response occurs in the softer medium region. The existence of an soft-hard interface leads to a sudden change in acceleration response, and its sensitivity is significantly affected by medium parameters and interface dig angles. With the increase of difference in the medium parameters and interface dig angles, the peak ground acceleration increases, the response spectrum curve shows more abundant short-period components, and the amplification effect on bedrock motion is enhanced. The influences of soft-hard interface on the surface seismic response of the site are mainly within twice the thickness of the medium layer outside the interface.
-
[1] 崔光耀, 王明年, 于丽, 等. 汶川地震公路隧道洞口结构震害分析及震害机理研究[J]. 岩土工程学报, 2013, 35(6): 1084-1091.
(CUI Guang-yao, WANG Ming-nian, YU Li, et al.Analysis of seismic damage and mechanism of portal structure of highway tunnel in Wenchuan earthquake[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1084-1091. (in Chinese))[2] SHEN Y, GAO B, YANG X, et al.Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 85-98. [3] KAUSEL E, ROESSET J M.Stiffness matrices for layered soils[J]. Bulletin of the seismological Society of America, 1981, 71(6): 1743-1761. [4] 尤红兵, 赵凤新, 荣棉水. 地震波斜入射时水平层状场地的非线性地震反应[J]. 岩土工程学报, 2009, 31(2): 234-240.
(YOU Hong-bing, ZHAO Feng-xin, RONG Mian-shui.Nonlinear seismic response of horizontal layered site due to inclined wave[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 234-240. (in Chinese))[5] LIU Z, LIANG J, WU C.The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS[J]. Computers and Geosciences, 2016, 91: 33-48. [6] WANG Z Z, GAO B, JIANG Y J, et al.Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J]. Science in China Series E: Technological Sciences, 2009, 52(2): 546-558. [7] 王维. 软硬突变地层盾构隧道地震响应特性研究[D]. 成都:西南交通大学, 2015.
(WANG Wei.The study of seismic response of shield tunnel crossing interface of soft and hard strata[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese))[8] 殷允腾, 李廷春. 土岩软硬结合部隧道结构的震害机理分析及抗震研究[J]. 现代隧道技术, 2013, 50(4): 84-91.
(YIN Yun-teng, LI Ting-chun.Analysis and study of the seismic failure mechanism and aseismic measures of a tunnel structure in the rock-soil interface area[J]. Modern Tunnelling Technology, 2013, 50(4): 84-91. (in Chinese))[9] 申玉生, 邹成路, 靳宗振, 等. 穿越软硬交界面隧道结构动力响应特性研究[J]. 现代隧道技术, 2015, 52(3): 95-102.
(SHEN Yu-sheng, ZOU Cheng-lu, JIN Zong-zhen.A study of the dynamic response characteristics of a tunnel structure through an interface of soft and hard rock[J]. Modern Tunnelling Technology, 2015, 52(3): 95-102. (in Chinese))[10] 王帅帅, 高波, 隋传毅, 等. 不同地质条件下隧道洞口仰坡地震破坏特性研究[J]. 岩土力学, 2014, 35(增刊1): 278-284.
(WANG Shuai-shuai, GAO Bo, SUI Chuan-yi, et al.Shaking table test for seismic behavior of upward slope at tunnel entrance in different geological conditions[J]. Rock and Soil Mechanics, 2014, 35(S1): 278-284. (in Chinese))[11] 何川, 郭瑞, 肖明清, 等. 铁路盾构隧道单、双层衬砌纵向力学性能的模型试验研究[J]. 中国铁道科学, 2013, 34(3): 40-46.
(HE Chuan, GUO Rui, XIAO Ming-qing, et al.Model test on longitudinal mechanical properties of single and double layered linings for railway shield tunnel[J]. China Railway Science, 2013, 34(3): 40-46. (in Chinese))[12] 张景, 何川, 耿萍, 等. 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报, 2017, 36(1):68-77.
(ZHANG Jing, HE Chuan, GENG Ping, et al.Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 68-77. (in Chinese))[13] 王道远, 袁金秀, 朱永全, 等. 高烈度区软硬岩交界段隧道震害机制及减震缝减震技术模型试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4113-4121.
(WANG Dao-yuan, YUAN Jin-xiu, ZHU Yong-quan, et al.Mechanism of seismic damage and mode test on absorption joint damping technology of tunnel across junction of soft and hard rock in highly seismic area[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4113-4121. (in Chinese))[14] 梁建文, 冯领香, 巴振宁. 局部断层场地对P波的散射影响研究[J]. 岩土力学, 2011, 32(1): 244-252.
(LIANG Jian-wen, FENG Ling-xiang, BA Zhen-ning.Diffraction of plane P waves around a local fault[J]. Rock and Soil Mechanics, 2011, 32(1): 244-252. (in Chinese))[15] BA Z, LIANG J, ZHANG Y.Scattering and diffraction of plane SH-waves by periodically distributed canyons[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 325-339. [16] WOLF J P.Dynamic soil-structure interaction[M]. Englewood Cliffs: Prentice-Hall, 1985. [17] 大崎顺彦. 地震动的谱分析入门[M]. 北京: 地震出版社, 1980.
(OHSAKI Y.Introduction to the spectral analysis of ground motion[M]. Beijing: Earthquake Press, 1980. (in Chinese))[18] 袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95-102.
(YUAN Xiao-ming, LI Rui-shan, SUN Rui.A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10): 95-102. (in Chinese)) -
期刊类型引用(25)
1. 王朋飞,祝壮,孙中光,曲越,张衡,李培现. 长壁工作面开采时间间隔对倾向主断面地表沉陷的影响研究. 采矿与安全工程学报. 2025(02): 282-293 . 百度学术
2. 丁星丞,李培现,康新亮,王明亮,张涛,郝登程. 融合概率积分法与SBAS-InSAR的开采沉陷计算方法. 矿业科学学报. 2025(01): 48-56 . 百度学术
3. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 . 百度学术
4. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 . 百度学术
5. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 . 百度学术
6. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 . 百度学术
7. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 . 百度学术
8. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 . 百度学术
9. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 . 百度学术
10. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 . 百度学术
11. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 . 百度学术
12. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 . 百度学术
13. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 . 百度学术
14. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 . 百度学术
15. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 . 百度学术
16. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 . 百度学术
17. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 . 百度学术
18. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 . 百度学术
19. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 . 百度学术
20. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 . 百度学术
21. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 . 百度学术
22. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 . 百度学术
23. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 . 百度学术
24. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 . 百度学术
25. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 . 百度学术
其他类型引用(16)