• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高地应力深埋隧道断裂破碎带段大变形控制现场试验研究

崔光耀, 王雪来, 王明胜

崔光耀, 王雪来, 王明胜. 高地应力深埋隧道断裂破碎带段大变形控制现场试验研究[J]. 岩土工程学报, 2019, 41(7): 1354-1360. DOI: 10.11779/CJGE201907021
引用本文: 崔光耀, 王雪来, 王明胜. 高地应力深埋隧道断裂破碎带段大变形控制现场试验研究[J]. 岩土工程学报, 2019, 41(7): 1354-1360. DOI: 10.11779/CJGE201907021
CUI Guang-yao, WANG Xue-lai, WANG Ming-sheng. Field tests on large deformation control measures of surrounding rock of deep tunnels in fault zones with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1354-1360. DOI: 10.11779/CJGE201907021
Citation: CUI Guang-yao, WANG Xue-lai, WANG Ming-sheng. Field tests on large deformation control measures of surrounding rock of deep tunnels in fault zones with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1354-1360. DOI: 10.11779/CJGE201907021

高地应力深埋隧道断裂破碎带段大变形控制现场试验研究  English Version

基金项目: 国家自然科学基金项目(51408008); 北京市青年拔尖人才培育计划项目(CIT&TCD201704013); 北京市属高校基本科研业务费项目(110052971921/061); 昆明铁路局科技项目重点课题(K17G43)
详细信息
    作者简介:

    崔光耀(1983— ),男,山东莒南人,博士,副教授,主要从事隧道与地下工程研究工作。E-mail:cyao456@163.com。

  • 中图分类号: TU457

Field tests on large deformation control measures of surrounding rock of deep tunnels in fault zones with high geostress

  • 摘要: 丽香铁路中义隧道出口平导玉龙雪山西麓断裂破碎带段围岩软弱、破碎,受高地应力及断裂破碎带影响严重,边墙大变形灾害突出,以此为研究背景,开展了4种围岩大变形控制措施的现场试验研究。试验结果表明:采用普通加强支护措施(工况1),无法控制该段围岩变形;采用“抗放结合”控制措施,下部围岩应力释放需缓释,采用工况3(双层支护+下台阶、仰拱分开施作)方案,试验段围岩应力得到较好控制,但其工序繁琐,施工进度缓慢;采用“强支”理念的工况4(单层支护+加强拱架+预留应急加固措施)方案,最大日变形速率、累计最大变形量均最小,分别为3.2 cm/d和62.2 cm,试验段全长围岩累计变形量在可控范围内,施工工序较为简单,施工月进尺可达90 m以上;考虑到平导需发挥超前作用,建议中义隧道出口平导玉龙雪山西麓断裂破碎带段采用工况4方案进行施工。研究结果可为类似工程提供参考。
    Abstract: The surrounding rock at the western piedmont of Yulong Snow Mountain fault zone of Zhongyi pilot tunnel at the tunnel exit of the Lijiang-Xianggelila railway is weak and fractured affected by the high geostress and fault zone, and the large deformation of the side wall is prominent. Four kinds of large deformation control measures for the surrounding rock are taken out in the field tests. The results show that the deformation of the surrounding rock is out of control adopting the general strengthening support measures (working condition 1). It needs slow release adopting control measures of resisting and reducing the stress of the surrounding rock. The stress of the surrounding rock of the test section is better controlled by working condition 3 (double-layer support + lower bench and inverted arch excavation), but the process is tedious and the construction progress is slow. Adopting the "strong support" measure of working condition 4 (monolayer support + strengthening arch support + reserved emergency reinforcement measures), the maximum daily rate of deformation and the maximum accumulation of deformation are the minimum, 3.2 cm/d and 62.2 cm respectively, the accumulation of deformation of the full test section is within the controllable range, the construction procedure is relatively simple, and the advance progress of the construction month can reach more than 90 m. In view of the advance effect of the pilot, It's highly recommended that the western piedmont of Yulong Snow Mountain fault zone of Zhongyi tunnel exit should adopt the working condition 4. The research results can provide a reference for large deformation control measures for the surrounding rock of deep tunnels in fault zones with high geostress.
  • [1] ORESTEPP, PEILAD.Modelling progressive hardening of shotcretein convergence-confinement approach to tunnel design[J]. Tunnelling and Underground Space Technology, 1997, 12(3): 425-431.
    [2] 王梦恕. 中国隧道及地下工程修建技术[M]. 北京: 人民交通出版社, 2010.
    (WANG Meng-shu.Tunnelling and underground engineering technology in China[M]. Beijing: China Communications Press, 2010. (in Chinese))
    [3] 何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002.
    (HE Man-chao, JING Hai-he, SUN Xiao-ming.Engineering mechanics of soft rock[M]. Beijing: Science Press, 2002. (in Chinese))
    [4] 关宝树, 赵勇. 软弱围岩隧道施工技术[M]. 北京: 人民交通出版社, 2011.
    (GUAN Bao-shu, ZHAO Yong.Construction technology of tunnel in soft surrounding rock[M]. Beijing: China Communications Press, 2011. (in Chinese))
    [5] 赵勇. 隧道软弱围岩变形机制与控制技术研究究[D]. 北京: 北京交通大学, 2012.
    (ZHAO Yong.Study on deformation mechanism and control technology of weak rock surrounding tunnel[D]. Beijing: Beijing Jiaotong University, 2012.(in Chinese))
    [6] 近藤敏达. NATM调查.计测と施工管理の问题点[J].施工技术, 1977(11): 76-80.
    (KONDO T.The management problem of measurement and control in tunnel construction with the NATM[J]. Construction Technology, 1977(11): 76-80. (in Japanese)
    [7] KIMURA F, OKABAYASHI N, KAWAMOTO T.Tunneling through squeezing rock in two large fault zones of the Enasan tunnel II[J]. Rock Mechanics and Rock Engineering, 1987, 20(3): 151-166.
    [8] 张祉道. 家竹箐隧道施工中支护大变形的整治[J]. 世界隧道, 1997(1): 7-16.
    (ZHANG Zhi-dao.Regulation of support large deformation for Jiazhuqing tunnel in construction[J]. Modern Tunneling Technology, 1997(1): 7-16. (in Chinese))
    [9] 刘高, 张帆宇, 李新召, 等. 木寨岭隧道大变形特征及机理分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5521-5526.
    (LIU Gao, ZHANG Fan-yu, LI Xin-zhao, et al.Reseach on large deformation and its mechanism of muzhailing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5521-5526. (in Chinese))
    [10] 李国良, 朱永全. 乌鞘岭隧道高地应力软弱围岩大变形控制技术[J]. 铁道工程学报, 2008(3): 54-59.
    (LI Guo-liang, ZHU Yong-quan.Control technology for large deformation of high land stressed weak rock in wushaoling tunnel[J].Journal of Railway Engineering Society, 2008(3): 54-59. (in Chinese))
    [11] 邹育麟, 何川, 周艺, 等. 强震区软弱破碎千枚岩隧道系统锚杆支护作用效果分析[J]. 岩土力学, 2013, 34(7): 2001-2008.
    (ZOU Yu-lin, HE Chuan, ZHOU Yi, et al.Analysis of supporting effect of systematic bolts applied to weak and broken phyllite tunnels in meizoseismal area[J]. Rock and Soil Mechanics, 2013, 34(7): 2001-2008. (in Chinese))
    [12] 万飞, 谭忠盛, 马栋. 关角隧道F2-1断层破碎带支护结构优化设计[J]. 岩石力学与工程学报, 2014, 33(3): 531-538.
    (WAN Fei,TAN Zhong-sheng,MA Dong.Optimizing design of support structure for Guanjiao tunnel in fault-rupture zone F2-1[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 531-538. (in Chinese))
    [13] 张德华, 刘士海, 任少强. 高地应力软岩隧道中型钢与格栅支护适应性现场对比试验研究[J]. 岩石力学与工程学报, 2014, 33(11): 2258-2266.
    (ZHANG De-hua, LIU Shi-hai, RENG Shao-qiang.Research on selection of steel and steel grid for tunnel support in soft rock with high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2258-2266. (in Chinese))
    [14] 丁远振, 谭忠盛, 马栋. 高地应力断层带软岩隧道变形特征与控制措施研究[J]. 土木工程学报, 2017, 50(增刊1): 129-134.
    (DING Yuan-zhen, TAN Zhong-sheng, MA Dong.Study on large deformation characteristics and control measures of soft rock tunnel in fault zone with high geostress[J]. China Civil Engineering Journal, 2017, 50(S1): 129-134. (in Chinese))
    [15] 李术才, 徐飞, 李利平, 等. 隧道工程大变形研究现状、问题与对策及新型支护体系应用介绍[J]. 岩石力学与工程学报, 2016, 35(7): 1366-1376.
    (LI Shu-cai, XU Fei, LI Li-ping, et al.State of the art:challenge and methods on large deformation in tunnel engineering and introduction of a new type supporting system[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1366-1376. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-08
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回