• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑大变形特征的超深冻结壁弹塑性设计理论

张博, 杨维好, 王宝生

张博, 杨维好, 王宝生. 考虑大变形特征的超深冻结壁弹塑性设计理论[J]. 岩土工程学报, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013
引用本文: 张博, 杨维好, 王宝生. 考虑大变形特征的超深冻结壁弹塑性设计理论[J]. 岩土工程学报, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013
ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013
Citation: ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013

考虑大变形特征的超深冻结壁弹塑性设计理论  English Version

基金项目: 国家重点研发计划专项项目(2016YFC0600904); 国家自然科学基金项目(41472224)
详细信息
    作者简介:

    张 博(1989— ),男,博士研究生,主要从事人工地层冻结技术与理论研究工作。E-mail: tb14220020@cumt.edu.cn。

    通讯作者:

    杨维好,E-mail:whyang@cumt.edu.cn

  • 中图分类号: TU471.7;TD265

Elastoplastic design theory for ultra-deep frozen wall considering large deformation features

  • 摘要: 冻结法是深厚不稳定、含水地层中最主要的凿井方法,冻结壁设计理论是冻结法凿井的技术核心之一。以往的深井冻结壁(表土层厚度超过400 m)设计理论忽略冻结壁变形对其尺寸、位置的影响,既偏于不安全,又低估开挖土方量。为了考虑超深表土层内大变形的影响,采用有限应变推导出变形前冻结壁的开挖半径与有效厚度的求解公式,建立冻结壁厚度设计新理论;与数值计算结果对比,分析了地应力、冻土黏聚力、冻土内摩擦角、弹性模量等参数对冻结壁厚度与井帮位移的影响。结果表明:新理论既能解决小变形问题,又能解决大变形问题,忽略弹性应变的理论公式能适用于应变达0.15的大变形情况,新理论还能准确地计算开挖土方量,为超深表土层冻结壁设计提供理论参考。
    Abstract: The freezing method is a key sinking method used in deep aquifer. The frozen-wall design theory is a key technique for the freezing method. However, the previous design theories for a deep artificial frozen wall have neglected the influences of side-wall deformation on its sizes and locations. Thus, the associated designs tend to be unsafe and the earthwork excavations tend to be underestimated. In order to consider the influences of a large deformation, new solution formulas for excavation radius and outer radii before deformation occurs are deduced by finite strains, and a new design theory for frozen-wall thickness is established. The analytical results are compared with numerical ones by analyzing the effects of various parameters, such as the crustal stress, and the cohesion, internal friction angle, and elastic modulus of frozen soil, on the side-wall displacement and frozen-wall thickness. The results indicate that both the small deformation and large deformation problems can be solved by the new formulas, the theoretical formula neglecting elastic strains can be applied to large deformation with strain up to 0.15, and the new formulas can accurately calculate the amount of excavation earthwork, and provide a theoretical reference for the design of frozen wall in ultra-deep soil layers.
  • [1] 翁家杰. 井巷特殊施工[M]. 北京: 煤炭工业出版社, 1991: 4-72.
    (WENG Jia-jie.Special construction engineering of mine shaft and drift [M]. Beijing: Coal Industry Press, 1991: 4-72. (in Chinese))
    [2] 杨维好. 十年来中国冻结法凿井技术的发展与展望[C]//中国煤炭学会成立五十周年高层学术论坛. 北京, 2012: 1-7.
    (YANG Wei-hao.Development and prospect of freezing shaft sinking technology in China over the past decade[C]// High-level Academic Forum for the 50th Anniversary of China Coal Society, China Coal Society. Beijing, 2012: 1-7. (in Chinese))
    [3] 杨维好, 杨志江, 柏东良. 基于与围岩相互作用的冻结壁弹塑性设计理论[J]. 岩土工程学报, 2013, 35(1): 175-180.
    (YANG Wei-hao, YANG Zhi-jiang, BAI Dong-liang.The elastic-plastic design theory of frozen soil wall based on the interaction between frozen wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 175-180. (in Chinese))
    [4] 杨维好, 杜子博, 杨志江, 等. 基于与围岩相互作用的冻结壁塑性设计理论[J]. 岩土工程学报, 2013, 35(10): 1857-1862.
    (YANG Wei-hao, DU Zibo, YANG Zhi-jiang.Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1857-1862. (in Chinese))
    [5] VRAKAS A, ANAGNOSTOU G.A finite strain closed-form solution for the elastoplastic ground response curve in tunneling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38: 1131-1148.
    [6] 陈晓祥, 杜贝举, 王雷超, 等. 综放面动压回采巷道帮部大变形控制机理及应用[J]. 岩土工程学报, 2016, 38(3): 460-467.
    (CHEN Xiao-xiang, DU Bei-ju, WANG Lei-chao, et al.Control mechanism and application of large deformation of dynamic pressure roadway of fully mechanized top-coal caving face[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 460-467. (in Chinese))
    [7] CARTER J P, BOOKER J R, YEUNG S K.Cavity expansion in cohesive frictional soil[J]. Géotechnique, 1986, 36(3): 349-358.
    [8] DECTOURNAY E.Elastoplastic model of a deep tunnel for a rock with variable dilatancy[J]. Rock Mechanics and Rock Engineering, 1986, 19: 99-108.
    [9] YU H S, HOULSBY G T.Finite cavity expansion in dilatant soils: loading analysis[J]. Géotechnique, 1991, 41(2): 173-183.
    [10] YU H S, ROWE R K.Plasticity solutions for soil behavior around contracting cavities and tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23: 1245-1279.
    [11] YU H S, CARTER J P.Rigorous similarity solutions for cavity expansion in cohesive-frictional soils[J]. International Journal of Geomechanics, 2002, 2(2): 233-258.
    [12] ZHAO J D, WANG G.Unloading and reverse yielding of a finite cavity in a bounded cohesive-frictional medium[J]. Computers and Geotechnics, 2010, 37: 239-245.
    [13] COHEN T, DURBAN D.Fundamental solutions of cavitation in porous solids: a comparative study[J]. Acta Mechanica, 2013, 224: 1695-1707.
    [14] VRAKAS A, ANAGNOSTOU G.Finite strain elastoplastic solutions for the undrained ground response curve in tunneling[J] International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39: 738-761.
    [15] 张常光, 张成林, 周菲, 等. 圆形隧道弹塑性分析的强度理论效应研究[J]. 岩土工程学报, 2018, 40(8): 1449-1456.
    (ZHANG Chang-guang. ZHANG Cheng-lin, ZHOU Fei, et al.Effect of strength theory in elastic-plastic analysis of a circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1449-1456. (in Chinese))
    [16] CHADWICK P.The quasi-static expansion of a spherical cavity in metals and ideal soils[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1959, 12: 52-71.
    [17] 杜修力, 马超, 路德春. 正常固结黏土的三维弹塑性本构模型[J]. 岩土工程学报, 2015, 37(2): 235-241.
    (DU Xiu-li, MA Chao, LU De-chun.Three-dimensional elastoplastic constitutive model for normal consolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 235-241. (in Chinese))
    [18] 郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103-1110.
    (GUO Wan-li, ZHU Jun-gao, PENG Wen-ming.Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. (in Chinese))
    [19] 杨维好, 杨志江, 韩涛, 等. 基于与围岩相互作用的冻结壁弹性设计理论[J]. 岩土工程学报, 2012, 34(3): 516-519.
    (YANG Wei-hao, YANG Zhi-jiang, HAN Tao, et al.Elastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 516-519. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-19
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回