• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地表超载对软、硬地层中既有盾构隧道影响的试验研究

黄大维, 周顺华, 冯青松, 李雪, 封坤, 黄强

黄大维, 周顺华, 冯青松, 李雪, 封坤, 黄强. 地表超载对软、硬地层中既有盾构隧道影响的试验研究[J]. 岩土工程学报, 2019, 41(5): 942-949. DOI: 10.11779/CJGE201905018
引用本文: 黄大维, 周顺华, 冯青松, 李雪, 封坤, 黄强. 地表超载对软、硬地层中既有盾构隧道影响的试验研究[J]. 岩土工程学报, 2019, 41(5): 942-949. DOI: 10.11779/CJGE201905018
HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LI Xue, FENG Kun, HUANG Qiang. Experimental study on influences of surface surcharge on existing shield tunnels buried in soft and hard soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 942-949. DOI: 10.11779/CJGE201905018
Citation: HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LI Xue, FENG Kun, HUANG Qiang. Experimental study on influences of surface surcharge on existing shield tunnels buried in soft and hard soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 942-949. DOI: 10.11779/CJGE201905018

地表超载对软、硬地层中既有盾构隧道影响的试验研究  English Version

基金项目: 国家自然科学基金项目(51608200,51478353,51368020)
详细信息
    作者简介:

    黄大维(1984— ),男,湖南郴州人,博士,讲师,主要从事地下铁道与岩土工程相关研究。E-mail:1110604@tongji.edu.cn。

    通讯作者:

    冯青松,E-mail:fqshdjtdx@aliyun.com

  • 中图分类号: TU43

Experimental study on influences of surface surcharge on existing shield tunnels buried in soft and hard soils

  • 摘要: 为了探明地表超载对软、硬地层中既有盾构隧道的影响,通过隧道与地层相互作用的模型试验,对地表超载作用下隧道变形、土压力及土体沉降进行了量测。试验结果分析表明,相同的地表超载作用下,软土地层中的隧道横椭圆变形要大于硬土地层中的隧道横椭圆变形。当隧道穿越土层的土体压缩模量较小时,地表超载作用下隧道上覆土层表现为被动土拱土压力;当隧道穿越土层的土体压缩模量较大时则为主动土拱土压力。隧道竖向收敛变形与其穿越土层竖向压缩量之间的关系分析表明,隧道横断面变形刚度与穿越土层的土体压缩模量共同决定隧道上覆土层的沉降状态,从而决定了地表超载对既有盾构隧道的影响。研究成果定性地揭示了软土地区既有盾构隧道在地表超载作用下极易发生变形超限的机理。
    Abstract: To explore the influences of surface surcharge on the existing shield tunnels buried in soft and hard soil strata, the scaled model tests on the interaction between shield tunnels and strata are carried out, and the tunnel deformation, earth pressure and soil settlement under surface surcharge are measured. Analysis of model test results shows that under the same surface surcharge, larger deformation is induced for the tunnel buried in soft soils than in hard soils. As the compression modulus of the soil strata is small, the overlaying soils over the tunnel exhibit passive earth arch pressure under surface surcharge. Under the large compression modulus of the soil strata, the overlaying soils over the tunnel show active earth arch pressure. The relation between the vertical convergence deformation of the tunnel and the vertical compression of the soil strata indicates that both the stiffness of cross section of shield tunnel and the compression modulus of soil strata determine the settlement state of the overlaying soils over the tunnel, and thus decide the influences of surface surcharge on the existing shield tunnels. The research results qualitatively reveal the reason of the mechanism why the oversized deformation is easily induced for the existing shield tunnels under surface surcharge.
  • [1] 毕湘利, 柳献, 王秀志, 等. 内张钢圈加固盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(11): 128-137.
    (BI Xiang-li, LIU Xian, WANG Xiu-zhi, et al.Experment study on the ultimate load-bearing capacity of deformed segmental tunnel linings strengthened steel plates[J]. China Civil Engineering Journal, 2014, 47(11): 128-137. (in Chinese))
    [2] 柳献, 张浩立, 鲁亮, 等. 超载工况下盾构隧道结构承载能力的试验研究[J]. 地下工程与隧道, 2013(4): 10-16.
    (LIU Xian, ZHANG Hao-li, LU Liang, et al.Experimental study on load bearing capacity of shield tunnel structure under overload condition[J]. Underground Engineering and Tunnels, 2013(4): 10-16. (in Chinese))
    [3] 毕湘利, 柳献, 王秀志, 等. 通缝拼装盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(10): 117-127.
    (BI Xiang-li, LIU Xian, WANG Xiu-zhi, et al.Experimental investigation on the ultimate bearing capacity of continuous-jointed segmental tunnel linings[J]. China Civil Engineering Journal, 2014, 47(10): 117-127. (in Chinese))
    [4] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043.
    (SHAO Hua, HUANG Hong-wei, ZHANG Dong-ming, et al.Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese))
    [5] CHOO J H, LEE T J, YOON T G, et al.The enhancement of performance on road tunnel lining by repair and rehabilitation[M]. Boca Raton: CRC Press-Taylor & Francis Group, 2013.
    [6] 魏纲, 张佳, 洪文强. 地表堆载对临近既有盾构隧道影响的研究综述[J]. 低温建筑技术, 2017, 39(6): 79-82.
    (WANG Gang, ZHANG Jia, HONG Wen-qiang.A review of the research on the impact of ground load on adjacent existing shield tunnel[J]. Low Temperature Architecture Technology, 2017, 39(6): 79-82. (in Chinese))
    [7] 黄大维, 周顺华, 赖国泉, 等. 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39(7): 1173-1181.
    (HUANG Da-wei, ZHOU Shun-hua, LAI Guo-quan, et al.Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173-1181. (in Chinese))
    [8] 程茜, 宫全美. 地铁盾构隧道下穿城市公园地基加固宽度分析[J]. 西南交通大学学报, 2018, 35(3): 15-22.
    (CHENG Xi, GONG Quan-mei.Analysis on reinforcement width of subway shield tunnel underpasing city park[J]. Journal of Southwest Jiaotong University, 2018, 35(3): 15-22. (in Chinese))
    [9] 吴庆, 杜守继. 地面堆载对既有盾构隧道结构影响的试验研究[J]. 地下空间与工程学报, 2014, 10(1): 57-66.
    (WU Qing, DU Shou-ji.Model test on influence of ground heaped load on existing shield tunnel structure[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(1): 57-66. (in Chinese))
    [10] 王如路, 张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报, 2013, 35(6): 1092-1101.
    (WANG Ru-lu, ZHANG Dong-mei.Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101. (in Chinese))
    [11] 张明告, 周顺华, 黄大维, 等. 地表超载对地铁盾构隧道的影响分析[J]. 岩土力学, 2016, 37(8): 2271-2278.
    (ZHANG Ming-gao, ZHOU Shun-hua, HUANG Da-wei, et al.Analysis of influence of surface on subway shield tunnel under[J]. Rock and Soil Mechannics, 2016, 37(8): 2271-2278. (in Chinese))
    [12] ZHANG Zhi-guo, HUANG Mao-song.Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil[J]. Comput Geotech, 2014, 56: 121-132.
    [13] 杨雨冰, 周彪, 谢雄耀. 邻近基坑施工作用下盾构隧道横向变形及开裂特性研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4082-4093.
    (YANG Yu-bing, ZHOU Biao, XIE Xiong-yao.Study on transverse deformation and cracking property of shield-driven tunnel induced by excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4082-4093. (in Chinese))
    [14] HUANG Hong-wei, ZHANG Dong-ming.Resilience analysis of shield tunnel lining under extreme surcharge: Characterization and field application[J]. Tunnelling and Underground Space Technology, 2016, 51: 301-312.
    [15] ZHANG Zhi-guo, HUANG Mao-song.Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil[J]. Comput Geotech, 2014, 56: 121-132.
    [16] 黄大维, 周顺华, 冯青松, 等. 地表均布超载作用下软土地区既有盾构隧道对地层相对挤压量的计算方法[J]. 中国铁道科学, 2018, 39(4): 93-100.
    (HUANG Da-wei, ZHOU Shun-hua, FENG Qingsong, et al.Calculation method for relative extrusion on surrounding ground by existing shiled tunnel in soft soil area under uniform surface surcharge load[J]. China Railway Science, 2018, 39(4): 93-100. (in Chinese))
    [17] 黄大维, 周顺华, 冯青松, 等. 盾构隧道与地层相互作用的模型试验设计[J]. 铁道学报, 2018, 40(6): 127-135.
    (HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al.Scaled model test design for interaction between shield tunnel and stratum[J]. Journal of the China Railway Society, 2018, 40(6): 127-135. (in Chinese))
    [18] 黄大维, 周顺华, 冯青松, 等. 通缝拼装盾构隧道横向刚度有效率计算方法及其影响因素[J]. 中国铁道科学, 2017, 38(3): 47-54.
    (HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al.Algorithm of transverse effective rigidity ratio for non-staggering installed shield-driven tunnel and its influential factors[J]. China Railway Science, 2017, 38(3): 47-54. (in Chinese))
    [19] 黄大维, 周顺华, 王秀志, 等. 模型盾构隧道管片纵缝接头设计方法[J]. 岩土工程学报, 2015, 37(6): 1068-1076.
    (HUANG Da-wei, ZHOU Shun-hua, WANG Xiu-zhi, et al.Design method for longitudinal segment joints of shield tunnel model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1068-1076. (in Chinese))
    [20] CHARLES H E.An examination of arching in granular soils[D]. Massachusetts America: Massachusetts Institute of Technology, 1984.
    [21] 宫全美, 张润来, 周顺华, 等. 基于颗粒椭球的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105.
    (GONG Quan-mei, ZHANG Run-lai, ZHOU Shun-hua, et al.Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. (in Chinese))
    [22] 芮瑞, 吴端正, 胡港, 等. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 837-845.
    (RUI Rui, WU Duan-zheng, HU Gang, et al.Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. (in Chinese))
  • 期刊类型引用(5)

    1. 窦杰,向子林,许强,郑鹏麟,王协康,苏爱军,刘军旗,罗万祺. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学. 2023(05): 1657-1674 . 百度学术
    2. 姚未来,刘元雪,陈进,程香. 新工科背景下岩土工程学科研究生培养科研支架式教学模式构建. 高等建筑教育. 2022(02): 66-76 . 百度学术
    3. 董亮,阚新生,邓国如,徐杰,袁慧. 短期电力负荷预测的时间序列数据深度挖掘模型设计. 能源与环保. 2021(06): 207-212 . 百度学术
    4. 刘元雪,姚未来,陈进,郑颖人. 建构“创新”基因, 改革岩土塑性力学研究生教材. 高等工程教育研究. 2021(05): 100-105 . 百度学术
    5. 刘洋,于鹏强,张铎,王肖肖. 一个基于微观力学分析的散粒体应力–剪胀关系. 岩土工程学报. 2021(10): 1816-1824 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-12-10

目录

    /

    返回文章
    返回