• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和软黏土固结过程中的不排水抗剪强度特性

雷国辉, 高翔, 徐可, 郑泽宇

雷国辉, 高翔, 徐可, 郑泽宇. 饱和软黏土固结过程中的不排水抗剪强度特性[J]. 岩土工程学报, 2019, 41(1): 41-49. DOI: 10.11779/CJGE201901004
引用本文: 雷国辉, 高翔, 徐可, 郑泽宇. 饱和软黏土固结过程中的不排水抗剪强度特性[J]. 岩土工程学报, 2019, 41(1): 41-49. DOI: 10.11779/CJGE201901004
LEI Guo-hui, GAO Xiang, XU Ke, ZHENG Ze-yu. Behavior of undrained shear strength of saturated soft clay under consolidation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 41-49. DOI: 10.11779/CJGE201901004
Citation: LEI Guo-hui, GAO Xiang, XU Ke, ZHENG Ze-yu. Behavior of undrained shear strength of saturated soft clay under consolidation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 41-49. DOI: 10.11779/CJGE201901004

饱和软黏土固结过程中的不排水抗剪强度特性  English Version

基金项目: 国家自然科学基金项目(51578213,51778211);中央高校基本科研业务费专项资金项目(2017B20614)
详细信息
    作者简介:

    雷国辉(1972- ),男,江西丰城人,博士,教授,从事土力学教学与科研工作。E-mail: leiguohui@hhu.edu.cn。

  • 中图分类号: TU432

Behavior of undrained shear strength of saturated soft clay under consolidation

  • 摘要: 集成大直径固结仪和微型十字板剪切仪的功能,开发和研制了饱和软黏土固结过程中可以随时开展剪切试验的系统装置,考虑超孔压随时间和空间变化的不均匀性,在微型十字板剪切仪板头处的空心轴杆底端配置微型孔压计,并在大直径固结仪中配置微型土压力计,使其具备自动实时监测在十字板剪切试验测点处有效应力变化的功能。利用该系统装置,开展了饱和软黏土在不同固结压力作用下,固结过程中不同时点的十字板剪切试验,实时监测了固结过程中的变形和孔压变化过程,得到了十字板剪切试验测点处的有效应力和不排水抗剪强度,分析了固结过程中不排水抗剪强度和有效应力之间的相关关系。结果表明,在不同固结压力作用下,固结完成后的不排水抗剪强度与有效应力呈现出传统的线性关系,但是,在某一固结压力作用下,固结过程中的不排水抗剪强度却随有效应力的增长呈非线性增长,而且,在不同固结压力作用下,固结压力越大,固结过程中达到相同的有效应力时所对应的不排水抗剪强度越大。固结过程中的不排水抗剪强度并不仅仅取决于剪前固结有效应力,还与剪前孔隙比相关,孔压消散速率小于变形速率是导致固结初期、剪前固结有效应力较小时,不排水抗剪强度较快增长的主要原因。
    Abstract: By integrating the functions of large-diameter consolidometer and miniature vane shear devices, a systematic apparatus is devised and developed to be capable of performing shear tests at any point in time during the consolidation process of saturated soft clay. Considering the non-uniformity change of the excess pore-water pressure in space and time, each miniature vane shear device is equipped with a miniature pore-water pressure transducer at the bottom of its hollow axial shaft mounting blades. The large-diameter consolidometer is equipped with miniature earth pressure cells. Thus the apparatus has a function of automatic real-time monitoring of changes of the effective stresses at the positions of vane shear tests. By using this systematic apparatus, the vane shear tests are carried out at different points in time during the consolidation process of saturated soft clay subjected to different consolidation pressures. The changes of real-time deformation and pore-water pressure are monitored during the consolidation process, and the effective stresses and the undrained shear strengths at the positions of vane shear tests are derived. The correlation between the shear strength and the effective stress is analyzed. It is shown that the traditional linear relationship exists between the undrained shear strengths at the end of consolidation under different pressures and effective stresses. However, under a certain consolidation pressure, the shear strength increases non-linearly with the increase in the effective stress during the consolidation process. Moreover, under different consolidation pressures, the larger the consolidation pressure, the higher the shear strength at the same effective stress generated during the consolidation process. The undrained shear strength gained during consolidation is dependent on the effective stress and the void ratio before shearing. The fact that the rate of dissipation of pore-water pressure is less than the rate of deformation is the main reason for the rapid increase in the undrained shear strength at the early stage of consolidation when the effective stress before shearing is relatively low.
  • [1] JGJ 79—2012 建筑地基处理技术规范[S]. 2013.
    (JGJ 79—2012 Technical code for ground treatment of buildings[S]. 2013. (in Chinese))
    [2] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100-111.
    (SHEN Zhu-jiang.Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111. (in Chinese))
    [3] LADD C C.The 22nd Terzaghi lecture: stability evaluation during staged construction[J]. Journal of Geotechnical Engineering, 1991, 117(4): 540-615.
    [4] CHAI J C, SAKAJO S, MIURA N.Stability analysis of embankment on soft ground (a case study)[J]. Soils and Foundations, 1994, 34(2): 107-114.
    [5] LI A L, ROWE R K.Combined effects of reinforcement and prefabricated vertical drains on embankment performance[J]. Canadian Geotechnical Journal, 2001, 38(6): 1266-1282.
    [6] FOURIE A B, DONG X B.Advantages of midheight pore pressure measurements in undrained triaxial testing[J]. Geotechnical Testing Journal, 1991, 14(2): 138-145.
    [7] NGUYEN Q D, BOGER D V.Direct yield stress measurement with the vane method[J]. Journal of Rheology, 1985, 29(3): 335-347.
    [8] RICHARDS A F.Vane shear strength testing in soils: field and laboratory studies[M]. Philadelphia: American Society for Testing and Materials, 1988.
    [9] DAVIS E H, RAYMOND G P.A non-linear theory of consolidation[J]. Géotechnique, 1965, 15(2): 161-173.
    [10] INDRARATNA B, RUJIKIATKAMJORN C, SATHANANTHAN I.Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechnical Journal, 2005, 42(5): 1330-1341.
    [11] AL-TABBAA A, MUIR WOOD D.Horizontal drainage during consolidation: insights gained from analyses of a simple problem[J]. Géotechnique, 1991, 41(4): 571-585.
    [12] HUANG J, GRIFFITHS D V.One-dimensional consolidation theories for layered soil and coupled and uncoupled solutions by the finite-element method[J]. Géotechnique, 2010, 60(9): 709-713.
    [13] LEI G H, ZHENG Q, NG C W W, et al. An analytical solution for consolidation with vertical drains under multi-ramp loading[J]. Géotechnique, 2015, 65(7): 531-547.
    [14] WALKER R, INDRARATNA B, RUJIKIATKAMJORN C.Vertical drain consolidation with non-Darcian flow and void-ratio-dependent compressibility and permeability[J]. Géotechnique, 2012, 62(11): 985-997.
    [15] ABOUSLEIMAN Y, CHENG A H-D, CUI L, et al. Mandel's problem revisited[J]. Géotechnique, 1996, 46(2): 187-195.
    [16] AL-TABBAA A.Excess pore pressure during consolidation and swelling with radial drainage[J]. Géotechnique, 1995, 45(4): 701-707.
    [17] ROBINSON R G, DASARI G R, TAN T S.Three-dimensional swelling of clay lumps[J]. Géotechnique, 2004, 54(1): 29-39.
    [18] 徐宏, 邓学均, 齐永正, 等. 真空预压排水固结软土强度增长规律性研究[J]. 岩土工程学报, 2010, 32(2): 285-290.
    (XU Hong, DENG Xue-jun, QI Yong-zheng, et al.Development of shear strength of soft clay under vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 285-290. (in Chinese))
    [19] KAMEI T, OGAWA S, TANAKA N.The variation in undrained shear characteristics during consolidation process[J]. Soils and Foundations, 1987, 27(3): 91-98.
    [20] LADD C C, FOOTT R.New design procedure for stability of soft clays[J]. Journal of Geotechnical Engineering Division, 1974, 100(7): 763-786.
    [21] MAYNE P W.Cam-clay predictions of undrained strength[J]. Journal of Geotechnical Engineering Division, 1980, 106(11): 1219-1242.
    [22] WROTH C P.The 24th Rankine lecture: The interpretation of in situ soil tests[J]. Géotechnique, 1984, 34(4): 449-489.
    [23] MAYNE P W.A review of undrained strength in direct simple shear[J]. Soils and Foundations, 1985, 25(3): 64-72.
    [24] MESRI G.A reevaluation of su(mob) = 0.22σp′ using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164.
    [25] HANZAWA H, TANAKA H.Normalized undrained strength of clay in the normally consolidated state and in the field[J]. Soils and Foundations, 1992, 32(1): 132-148.
    [26] WANG L Z, SHEN K L, YE S H.Undrained shear strength of K0 consolidated soft soils[J]. International Journal of Geomechanics, 2008, 8(2): 105-113.
    [27] CHING J, PHOON K K.Transformations and correlations among some clay parameters―the global database[J]. Canadian Geotechnical Journal, 2014, 51(6): 663-685.
    [28] UMEZAKI T, OCHIAI H, HAYASHI S.Undrained shear strength of clay during consolidation[C]// Proceedings of the 11th Southeast Asian Geotechnical Conference. Bangkok, 269-274.
    [29] SUZUKI K, YASUHARA K.Increase in undrained shear strength of clay with respect to rate of consolidation[J]. Soils and Foundations, 2007, 47(2): 303-318
    [30] INDRARATNA B, BASACK S, RUJIKIATKAMJORN C.Numerical solution of stone column―improved soft soil considering arching, clogging, and smear effects[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 377-394.
  • 期刊类型引用(4)

    1. 勒治华,于庆磊,蒲江涌. 充填散体材料侧限压缩试验径径比的确定方法. 中南大学学报(自然科学版). 2023(03): 1054-1061 . 百度学术
    2. 宋飞,朱婕,付娆. 考虑蠕变变形的格室加筋土力学性质研究. 地下空间与工程学报. 2023(S1): 165-173 . 百度学术
    3. 付娆,宋飞. 格室加筋土等效强度计算方法对比研究. 地基处理. 2021(03): 188-194 . 百度学术
    4. 朱家宏. 勘察土工试验数据科学性及准确性的提升策略分析——以岩土工程为例. 冶金管理. 2021(17): 126-127 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  455
  • HTML全文浏览量:  4
  • PDF下载量:  380
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-10-26
  • 发布日期:  2019-01-24

目录

    /

    返回文章
    返回