Hydraulic conductivity of widely-graded gravelly soils
-
摘要: 宽级配砾质土是一种性能良好的防渗料,然而土体的细粒含量、细粒物理特性、击实功以及颗粒级配等多种因素均对其渗透系数有很大的影响。针对以上因素对宽级配土的渗透系数影响因素展开试验研究。采用不同细粒含量、不同种类细粒部分以及不同级配的宽级配砾质土进行室内变水头渗透试验,探究这些因素对渗透系数的影响规律。试验结果表明:宽级配砾质土的渗透系数随着细粒含量的升高先迅速降低后趋于平稳;随着细粒料液限和塑性指数的增加,宽级配砾质土的渗透系数逐渐降低;以粉质黏土和黏土为细粒料的宽级配砾质土的渗透系数均随击实功的增加呈指数函数形式下降;粗粒料级配连续性越好,宽级配砾质土渗透系数越低。根据大坝心墙渗透系数小于1×10-5 cm/s的防渗要求,提出了以界限含水率和细粒料百分比为控制指标的宽级配土防渗料的控制标准。Abstract: The widely-graded gravelly soil has the potential to serve as an excellent anti-seepage material. However, the content of fine particles, properties of fines, compactive effort and grain-size distribution of coarse materials have great influence on the hydraulic conductivity of the widely-graded gravelly soils. Laboratory experiments are conducted to study the effect of above factors. The hydraulic conductivities of soils with different fines, coarse grains and mix ratios are measured using the variable water head permeability tests. The test results demonstrate that the permeability coefficient of the widely-graded gravelly soils decreases rapidly when the content of fines increases from 0 to 40%, and tends to be stable under higher value. The permeability coefficient decreases with the increase of liquid limit and plasticity index of fines. The permeability coefficient of silt and clay decreases exponentially with the increase of compactive effort. The continuity of the gradation of coarse materials can help to reduce the permeability of soils. According to the requirements of permeability of the core of earth dams, i.e., less than 1×10-5 cm/s, the necessary mix ratio and properties of fines are proposed when the widely-graded gravelly soil is used as an anti-seepage material.
-
[1] FOX P J, ROSS J D, SURA J M, et al.Geomembrane damage due to static and cyclic shearing over gravelly sand[J]. Geosynthetics International, 2011, 18(5): 272-279. [2] DJARWADI D, SURYOLELONO K B, SUHENDRO B, et al.Selection of soils as clay core embankment materials for rock fill dams to resist hydraulic fracturing[J]. Procedia Engineering, 2014, 95: 489-497. [3] 刑新元. 砾石土在瀑布沟大坝工程中的应用[J]. 东北水利水电, 2009, 27(3): 59-62.
(XING Xin-yuan.Application of gravelly soil in Pubugou dam[J]. Water Resources & Hydropower of Northeast China, 2009, 27(3): 59-62. (in Chinese))[4] 屈智炯. 宽级配砾质土在土石坝防渗体中的应用及其渗流控制的进展[J]. 水电站设计, 1992(3): 46-53.
(QU Zhi- jiong. Application of wide graded gravelly soil in impervious body of earth rock dam and progress of seepage control[J]. Hydropower Station Design, 1992(3): 46-53. (in Chinese))[5] 刘忠, 朱俊高, 乔瑞社, 等. 水泥砾质土渗透特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 101-105.
(LIU Zhong, ZHU Jun-gao, QIAO Rui-she, et al.Permeability characteristics of cement-gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 101-105. (in Chinese))[6] 保华富, 尹志伟. 砾质土作为土石坝防渗体的研究[J]. 岩土工程技术, 1999(4): 34-38.
(BAO Hua-fu, YIN Zhi-wei.Study on gravelly soil as impervious body of earth rock dam[J]. Geotechnical Technology, 1999(4): 34-38. (in Chinese))[7] 余挺. 宽级配砾质土防渗料在高土石坝上的应用[J]. 水电站设计, 2003, 19(3): 15-17.
(YU Ting.Application of wide graded gravelly soil impervious material in high earth rockfill dam[J]. Hydropower Station Design, 2003, 19(3): 15-17. (in Chinese))[8] TAHERI A, SARAKI Y, TATSUOKA F, et al.Strength and deformation characteristics of cement-mixed gravelly soil inmultiple-step triaxial compression[J]. Soils & Foundations, 2012, 52(1): 126-145. [9] 陈志波, 朱俊高, 王强. 宽级配砾质土压实特性试验研究[J].岩土工程学报, 2008, 3(30): 436-447.
(CHEN Zhi-bo, ZHU Jun-gao, WANG Qiang.Compaction property of wide grading gravelly soil[J]. Chinese Journal of Geotechnical Engineering ,2008, 3(30): 436-447. (in Chinese))[10] 廖义玲, 朱立军. 贵州碳酸盐岩红土[M]. 贵阳: 贵州人民出版社, 2004.
(LIAO Yi-ling, ZHU Li-jun.Red clay of carbonate rocks in Guizhou[M]. Guiyang: Guizhou People's Publishing House, 2004. (in Chinese))[11] 赵成刚, 白冰, 王运霞. 土力学原理[M]. 北京: 清华大学出版社, 北京交通大学出版社, 2009.
(ZHAO Cheng-gang, BAI Bing, WANG Yun-xia.Principle of soil mechanics[M]. Beijing: Tsinghua University Pess, Beijing Jiaotong University Press, 2009. (in Chinese))[12] WOOD M, MAEDE K.Changing grading of soil: effect on critical states[J]. ActaGeotechnica, 2007, 3(1): 3-14. [13] OLA S A.Permeability of three compacted tropical soils[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 1980, 13(2): 87-95. [14] 韦复才. 桂林红黏土的物质组成及其工程地质性质特征[J]. 江西师范大学学报(自然版), 2005, 29(5): 460-464.
(WEI Fu-cai.Material compositions and engineering geological properites of Guilin red soil[J]. Journal of Jiangxi Normal University (Natural Science), 2005, 29(5): 460-464. (in Chinese)) -
期刊类型引用(17)
1. 姚贵,张志明,袁勇,禹海涛,吴彦霖. 基于振动台试验的中庭式地铁车站地震响应数值模拟. 山东理工大学学报(自然科学版). 2025(03): 57-63 . 百度学术
2. 崔春义,许民泽,许成顺,赵经彤,刘海龙,孟坤. 考虑地震需求统计不确定性的地铁车站结构地震易损性分析. 岩土工程学报. 2025(03): 453-462 . 本站查看
3. 张启良. 大跨度无柱平顶结构地铁车站抗震分析. 智能城市. 2025(01): 148-151 . 百度学术
4. 侯本伟,游丹,范世杰,许成顺,钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估. 清华大学学报(自然科学版). 2024(03): 509-519 . 百度学术
5. 丘志杰,龙慧,汪博豪,刘璐瑶. 相邻框架结构与地铁车站的间距比对地铁车站地震响应的影响. 南华大学学报(自然科学版). 2024(04): 26-36 . 百度学术
6. 李维沈,李文婷,徐昊哲. 地下结构抗震性能指标限值的影响因素研究. 自然灾害学报. 2024(06): 178-191 . 百度学术
7. 姚凡夫,杨帆,庄海洋. CFRP布加固的地铁地下车站结构中柱抗震性能研究. 震灾防御技术. 2024(04): 754-762 . 百度学术
8. 苗晗,蒋录珍,安军海,李莎,马晓明. 叠合装配式管廊结构抗震性能水平与评价方法研究. 震灾防御技术. 2023(01): 53-64 . 百度学术
9. 庄海洋,李晟,王伟,陈国兴. 采用不同隔震形式的双层地铁地下车站结构地震反应分析. 振动工程学报. 2023(02): 379-388 . 百度学术
10. 白立广. 地下双层车站盖挖段主体结构施工技术. 建筑机械. 2023(08): 63-67 . 百度学术
11. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
12. 游裕鑫,邵国建,李昂,刘旭. 异跨框架式地铁地下车站结构三维非线性地震响应分析. 河南科学. 2022(04): 610-617 . 百度学术
13. 罗永鸿,张梓鸿,许成顺,李洋. 基于Pushover分析方法的多层地铁车站地震反应研究. 震灾防御技术. 2022(01): 143-153 . 百度学术
14. 张椿民. 地下多层地铁车站结构抗震设计对比分析. 市政技术. 2022(12): 50-58 . 百度学术
15. 范世杰,游丹,侯本伟,许成顺. 基于网络效率的城市轨道交通网络震后性能评估. 防灾减灾工程学报. 2022(06): 1165-1173+1190 . 百度学术
16. 陈文斌,庄海洋,李晟,陈苏. 基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究. 震灾防御技术. 2021(01): 146-156 . 百度学术
17. 丁录董,徐军林,庄海洋,陈文斌. 预制+现浇装配式地铁地下车站结构地震反应的三维有限元分析. 世界地震工程. 2021(04): 157-166 . 百度学术
其他类型引用(16)