• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于颗粒级配曲线预测非饱和土持水曲线的物理方法

张昭, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, 李建军

张昭, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, 李建军. 基于颗粒级配曲线预测非饱和土持水曲线的物理方法[J]. 岩土工程学报, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039
引用本文: 张昭, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, 李建军. 基于颗粒级配曲线预测非饱和土持水曲线的物理方法[J]. 岩土工程学报, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039
ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039
Citation: ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039

基于颗粒级配曲线预测非饱和土持水曲线的物理方法  English Version

基金项目: 国家自然科学基金项目(41402258,41372304,51679198); 中国博士后科学基金项目(2015M572657XB); 陕西省自然科学基础研究计划-青年人才项目(2016JQ4002); 陕西省博士后科研项目(107-434016007); 陕西省“百人计划”项目(302-253051601)
详细信息
    作者简介:

    张 昭(1983- ),男,陕西西安人,博士,副教授,主要从事非饱和土水力-力学特性的研究工作。E-mail:zhangzhao_1983@126.com。

    通讯作者:

    刘奉银,E-mail:liufy@xaut.edu.cn

  • 中图分类号: TU43

Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution

  • 摘要: 持水曲线模型中若含有未知经验参数,则可能会降低对持水曲线预测的可靠度。为此,对土样颗粒级配曲线上划分的粒组分别构建形如立方体的天然土颗粒以及理想球体颗粒集合体,依据这两者的几何特征和物理性质推得其比例关系;基于粒组信息、干密度以及土粒密度提出了计算土孔隙半径和持水曲线的物理方法,无需引入未知经验参数。最后,利用非饱和土水力特性数据库UNSODA中40个土样的持水试验结果对该方法进行了验证,通过计算基质吸力预测值及其实测值之间的均方根残差(RMSR)发现物理方法的RMSR在0.179~0.833范围内变化,并对其中37个土样的持水曲线预测精度优于含有两个未知经验参数的传统Arya模型。
    Abstract: Unknown empirical parameters in water retention models may reduce the reliability of prediction. The cube-shaped assemblages of natural soil and idealized spherical particles are developed according to the fractions from particle-size distribution. On the basis of geometry and physical properties, a relationship of proportionality between them is then proposed to provide a physical approach for computing pore radii and water retention curves of soils from particle-size fractions, bulk density and particle density without incorporating unknown empirical parameters. Finally, the physical approach is validated against the test data of water retention for a total of forty soil samples from the hydraulic property database UNSODA. The results of RMSR between the predicted and the measured values of matric suction show that the distribution of RMSR values ranges from 0.179 to 0.833. This physical approach is also superior to the traditional Arya model which requires two unknown empirical parameters for describing the water retention curves for thirty seven of the forty soil samples.
  • [1] VAN Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [2] FREDLUND D G, XING A.Equation for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
    [3] KOSUGI K.Three-parameter lognormal distribution model for soil water retention[J]. Water Resource Research, 1994, 30(4): 891-901.
    [4] HWANG S I, POWERS S E.Lognormal distribution model for estimating soil water retention curves for sandy soils[J]. Soil Science, 2003, 93(6): 405-412.
    [5] 方祥位, 陈正汉, 申春妮, 等. 剪切对非饱和土土-水特征曲线影响的探讨[J]. 岩土力学, 2004, 25(9): 1451-1454.
    (FANG Xiang-wei, CHEN Zheng-han, SHEN Chun-ni, et al.A study on effect of shear on soil-water characteristic curve of an unsaturated soil[J]. Rock and Soil Mechanics, 2004, 25(9): 1451-1454. (in Chinese))
    [6] 张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011, 44(7): 119-126.
    (ZHANG Xue-dong, ZHAO Cheng-gang, LIU Yan, et al.Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119-126. (in Chinese))
    [7] ZHOU A N, SHENG D C, CARTER J P.Modelling the effect of initial density on soil-water characteristic curves[J]. Géotechnique, 2012, 62(8): 669-680.
    [8] HU R, CHEN Y F, LIU H H, et al.A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
    [9] KHLOSI M, CORNELIS W M, GABRIELS D, et al.Simple modification to describe the soil water retention curve between saturation and oven dryness[J]. Water Resources Research, 2006, 42(11): W11501.
    [10] RUDIYANTO, SAKAI M, VAN GENUCHTEN M T, et al. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis[J]. Water Resources Research, 2015, 51(11): 8757-8772.
    [11] 栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线[J]. 岩土工程学报, 2005, 27(6): 611-615.
    (LUAN Mao-tian, LI Shun-qun, YANG Qing.Theoretical soil-water characteristic curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 611-615. (in Chinese))
    [12] YANG S, LU T H.Study of soil-water characteristic curve using microscopic spherical particle model[J]. Pedosphere, 2012, 22(1): 103-111.
    [13] 徐炎兵, 韦昌富, 陈辉, 等任意干湿路径下非饱和岩土介质的土水特征关系模型[J]. 岩石力学与工程学报, 2008, 27(5): 1046-1052.
    (XU Yan-bing, WEI chang-fu, CHEN Hui, et al. A model of soil-water characteristics for unsaturated geotechnical materials under arbitrary drying-wetting paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1046-1052. (in Chinese))
    [14] 蔡国庆, 赵成刚, 刘艳. 非饱和土土-水特征曲线的温度效应[J]. 岩土力学, 2010, 31(4): 1055-1060.
    (CAI Guo-qing, ZHAO Cheng-gang, LIU Yan.Temperature effects on soil-water characteristic curve of unsaturated soils[J]. Rock and Soil Mechanics, 2010, 31(4): 1055-1060. (in Chinese))
    [15] 秦冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩土工程学报, 2012, 34(10): 1877-1886.
    (QIN Bing, CHEN Zheng-han, SUN Fa-xin.Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. (in Chinese))
    [16] FREDLUND M D, WILSON G W, FREDLUND D G.Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103-1117.
    [17] CHIU C F, YAN W M, YUEN K V.Estimation of water retention curve of granular soils from particle-size distribution-a Bayesian probabilistic approach[J]. Canadian Geotechnical Journal, 2012, 49(9): 1024-1035.
    [18] ARYA L M, LEIJ F J, VAN GENUCHTEN M T, et al. Scaling parameter to predict the soil water characteristic from particle-size distribution data[J]. Soil Science Society of America Journal, 1999, 63(3): 510-519.
    [19] ARYA L M, BOWMANN D C, THAPA B, et al.Scaling soil water characteristics of golf course and athletic field sands from particle-size distribution[J]. Soil Science Society of America Journal, 2008, 72(1): 25-32.
    [20] LEIJ F J.UNSODA unsaturated soil hydraulic database[R]. Cincinnati: U. S. Environmental Protection Agency, 1996.
  • 期刊类型引用(3)

    1. 吴德顺,顾晓强,刘鑫. 上海地铁运行引起软土场地振动实测与预测模型研究. 结构工程师. 2023(05): 174-183 . 百度学术
    2. 蒋家文,张琦. 超导磁悬浮列车及超导技术的运用. 智能城市. 2021(18): 136-137 . 百度学术
    3. 邱乐侠,胡启洲,吴翊恺,吴啸宇. 基于多粒度粗糙集与多级可拓的高速磁浮系统综合评判. 交通运输工程与信息学报. 2021(04): 106-117 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  210
  • HTML全文浏览量:  3
  • PDF下载量:  145
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-02-23
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回