• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄土填方地基中微型钢管桩承载性状试验研究

朱彦鹏, 王海明, 杨奎斌, 杨校辉

朱彦鹏, 王海明, 杨奎斌, 杨校辉. 黄土填方地基中微型钢管桩承载性状试验研究[J]. 岩土工程学报, 2018, 40(S1): 198-204. DOI: 10.11779/CJGE2018S1032
引用本文: 朱彦鹏, 王海明, 杨奎斌, 杨校辉. 黄土填方地基中微型钢管桩承载性状试验研究[J]. 岩土工程学报, 2018, 40(S1): 198-204. DOI: 10.11779/CJGE2018S1032
ZHU Yan-peng, WANG Hai-ming, YANG Kui-bin, YANG Xiao-hui. Experimental study on bearing characteristics of micro steel tube piles in loess fill foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 198-204. DOI: 10.11779/CJGE2018S1032
Citation: ZHU Yan-peng, WANG Hai-ming, YANG Kui-bin, YANG Xiao-hui. Experimental study on bearing characteristics of micro steel tube piles in loess fill foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 198-204. DOI: 10.11779/CJGE2018S1032

黄土填方地基中微型钢管桩承载性状试验研究  English Version

详细信息
    作者简介:

    朱彦鹏(1960- ),男,教授,博士生导师,主要从事支挡结构、地基处理和工程事故分析与处理等方面的研究与教学工作。E-mail:zhuypl@163.com。

    通讯作者:

    王海明,E-mail:179712151@qq.com

  • 中图分类号: TU444

Experimental study on bearing characteristics of micro steel tube piles in loess fill foundation

  • 摘要: 目前对于黄土填方场地微型钢管桩桩基性能的研究非常匮乏。依托某实际加固纠偏工程,在黄土填方场地制作三根微型钢管桩试桩,在试桩桩身混凝土中布置混凝土应变计,进行现场单桩静载试验。实测结果研究表明:①在一些特定场合,尤其是在施工场地狭小,工程条件复杂的情况下,微型钢管桩可用于黄土填方场地较大荷载的建筑物基础纠偏加固中,并且在黄土填方场地具有较高的承载力。②黄土填方地基中微型钢管桩的Q-s曲线呈缓变型,当加载至最大荷载时,都没有出现明显向下的弯折段。③微型钢管桩在黄土填方场地其承载力介于材料破坏和失稳破坏之间,约为材料破坏的62%,是失稳破坏的1.76倍,桩身挠曲而产生过大沉降是导致试桩破坏的主要原因。④在黄土填方地基中确定30~40 m长的微型钢管桩单桩竖向极限承载力时,建议将Q-s曲线和s-lgt曲线相结合,同时考虑桩顶沉降值,这样才较为合理。
    Abstract: The researches on the performance of micro steel tube piles for the loess fill foundation are very scarce. Based on a practical reinforcement and slant rectification project, three micro steel tube piles are used as the test piles in the loess fill site. The single-pile static load tests with concrete strain gauges arranged on concrete of test piles are performed. The results show that: (1) In some cases, especially in the narrow construction site under complicated engineering conditions, the micro steel tube pile can be used for reinforcement and slant rectification of foundation of high load-support and has higher bearing capacity. (2) The Q-s curve of the micro steel tube piles slowly changes in loess fill site. Under the maximum load, there is no obvious downward bending section. (3) The bearing capacity of micro steel pipe piles in the loess fill foundation is between the material damage and the unstable failure, about 62% of the material damage and 1.76 times the unstable failure. The settlement caused by pile deflection is the uppermost reason for the failure of the test piles. (4) When defining the vertical ultimate bearing capacity of single pile of the micro steel tube piles 30~40 meters in length in loess fill foundation, it is recommended to combine the Q-s curve and the s-lgt curve, and to consider the settlement value of pile top, and it is more reasonable.
  • [1] 刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997.
    (LIU Zu-dian.Mechanics and engineering of loess[M]. Xi'an: Shaanxi Science and Technology Press, 1997. (in Chinese))
    [2] 陈正汉, 刘祖典. 黄土的湿陷变形机理[J]. 岩土工程学报, 1986, 8(2): 1-12.
    (CHEN Zheng-han, LIU Zu-dian.Mechanism of collapse deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(2): 1-12. (in Chinese))
    [3] 高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990, 12(4): 1-10.
    (GAO Guo-rui.A structure collapsing deformation of loess soils[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 1-10. (in Chinese))
    [4] 黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土中灌注承载性状与负摩阻力的试验研究[J]. 岩土工程学报, 2007, 29(3): 338-346.
    (HUANG Xuefeng, CHEN Zheng-han, HA Shuang, et al.Research on bearing behaviors and negative friction force for filling piles in the site of collapsible loess with big thickness[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 338-346. (in Chinese))
    [5] 朱彦鹏, 赵天时, 陈长流. 桩基负摩阻力沿桩长变化的实验研究[J]. 岩土力学, 2013, 34(增刊1): 265-272.
    (ZHU Yan-peng, ZHAO Tian-shi, CHEN Chang-liu.Field tests on changes of pile negative friction along its length[J]. Rock and Soil Mechanics, 2013, 34(S1): 265-272. (in Chinese))
    [6] 康景文, 毛坚强, 许建, 等. 填土场地桩基负侧摩阻力设计计算方法试验研究[J]. 岩土力学, 2014, 35(增刊2): 26-29.
    (KANG Jing-wen, MAO Jian-qiang, XU Jian, et al.Experiment study of calculation method for pile negative side friction in fill site[J]. Rock and Soil Mechanics, 2014, 35(S2): 26-29. (in Chinese))
    [7] 楼晓明, 林炳圣. 填土荷载作用下环形群桩基础的负摩阻力及桩间土沉降特性[J]. 岩土工程学报, 2013, 35(增刊2): 1163-1166.
    (LOU Xiao-ming, LING Bing-sheng.Characteristics of negative skin resistance and settlements at center of annular pile groups under filling load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1163-1166. (in Chinese))
    [8] 杨校辉, 黄雪峰, 朱彦鹏, 等. 大厚度自重湿陷性黄土地基处理深度和湿陷性评价试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 1063-1074.
    (YANG Xiao-hui, HUANG Xue-feng, ZHU Yan-peng, et al.Experimental study on site soaking and foundation treatment deepness of self-weight collapse with heavy section[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 1063-1074. (in Chinese))
    [9] GB 50007—2011建筑地基基础设计规范[S]. 2011. (GB50007—2011 Code for design of building foundation[S]. 2011. (in Chinese))
    [10] JGJ106—2014建筑桩基检测技术规范[S]. 2014. (JGJ106—2014 Technical code for testing of building foundation piles[S]. 2014. (in Chinese))
    [11] 张忠苗. 桩基工程[M]. 北京: 中国建筑工业出版社, 2007.
    (ZHANG Zhong-miao.Pile foundation project[M]. Beijing: China Architecture and Building Press, 2009. (in Chinese))
    [12] 朱彦鹏, 董芸秀, 包泽学, 等. 超大厚度Q2黄土场地单桩承载力试验研究[J]. 岩石力学与工程学报, 2014, 33(增2): 4375-4383.
    (ZHU Yan-peng, DONG Yun-xiu, BAO Ze-xue, et al.Experimental study of bearing capacity of single pile in large thickness Q2 loess ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33((S2): 4375-4383. (in Chinese))
    [13] 张雁, 刘金波.桩基手册[M]. 北京: 中国建筑工业出版社, 2009: 54-59.
    (ZHANG Yan, LIU Jin-bo.Handbook for pile foundation[M]. Beijing: China Architecture and Building Press, 2009: 54-59. (in Chinese))
    [14] 林天健, 熊厚金, 王利群. 桩基础设计指南[M]. 北京: 中国建筑工业出版社, 1999: 410-418.
    (LIN Tian-jian, XIONG Hou-jin, WANG Li-qun.Pile foundation design manual[M]. Beijing: China Architecture and Building Press, 1999: 410-418. (in Chinese))
    [15] 钟善桐, 钢管混凝土统一理论——研究与应用[M]. 北京:清华大学出版社, 2006: 16-17.
    (ZHONG Tong-shan.Unified theory of concrete filled steel tube[M]. Beijing: Tsinghua University Press, 1999: 16-17. (in Chinese))
    [16] 蔡绍怀. 现代钢管混凝结构[M]. 北京: 人民交通出版社, 2006: 16-17.
    (CAI Shao-huai.Modern steel tube confined concrete structures[M]. Beijing: China Communication Press, 2003: 11-17. (in Chinese))
    [17] 欧智菁, 陈宝春. 钢管混凝土柱稳定系数的统一算法研究[J]. 岩土工程学报, 2012, 45(4): 43-47.
    (OU Zhi-qing, CHEN Bao-chun.Study of unified calculation method for the stability factor of concrete filled steel tubular laced columns[J]. Chinese Journal of Geotechnical Engineering, 2012, 45(4): 43-47. (in Chinese))
    [18] 铁道部第三勘测设计院. 铁路工程设计技术手册[M]. 北京: 人民铁道出版社, 1983: 1-48.
    (Third Survey and Design Institute. Railway engineering design technical manuals[M]. Beijing: People's Railway Press, 1983: 1-48. (in Chinese))
    [19] 高大钊. 土力学与基础工程[M]. 北京:中国建筑工业出版社, 1998: 241-242.
    (GAO Da-zhao.Soil mechanics and foundation engineering[M]. Beijing: China Architecture and Building Press, 1998: 241-242. (in Chinese))
计量
  • 文章访问数:  199
  • HTML全文浏览量:  3
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-10
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回