• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于不同渗透持时的非饱和黄土渗透系数预测分析

谌文武, 刘伟, 王娟, 孙冠平, 吴玮江, 侯小强

谌文武, 刘伟, 王娟, 孙冠平, 吴玮江, 侯小强. 基于不同渗透持时的非饱和黄土渗透系数预测分析[J]. 岩土工程学报, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
引用本文: 谌文武, 刘伟, 王娟, 孙冠平, 吴玮江, 侯小强. 基于不同渗透持时的非饱和黄土渗透系数预测分析[J]. 岩土工程学报, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
Citation: CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004

基于不同渗透持时的非饱和黄土渗透系数预测分析  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB744701); 国家自然科学基金项目(41362014); 甘肃省科学院项目(2015jk-01); 甘肃省建设科技项目(JK-2016-23)
详细信息
    作者简介:

    谌文武(1966- ),男,教授,博士生导师,主要从事地质灾害与文物保护工程等方面的教学和科研工作。E-mail:sungp@lzu.edu.cn。

  • 中图分类号: TU43

Prediction of coefficient of permeability of unsaturated loess with different seepage durations

  • 摘要: 首先通过渗透试验和压力板仪试验获得不同渗透持时的黄土的土水特征曲线,在此基础上利用van Genuchten模型对土水特征曲线进行拟合,最后利用拟合参数结合van Genuchten渗透模型进行不同渗透持时的非饱和黄土渗透系数预测分析。研究发现,随着渗透持时的增加,非饱和黄土的渗透系数一直在减小,减小幅度超过50%。渗透持时相同的条件下,非饱和黄土渗透系数随着体积含水率的增加而增加,且在接近饱和状态时,增加的幅度开始减缓。结合扫描电镜试验结果发现,黄土渗透系数减小的重要原因系由于随着渗透持时的增加,黄土中大孔隙减少而中小孔隙增加造成。
    Abstract: The coefficient of permeability of unsaturated loess is very important to seepage calculation and slope instability analysis of loess. Using the direct method to test the coefficient of permeability of unsaturated loess is time-consuming and more expensive. Now scholars prefer to obtain the unsaturated coefficient of permeability through calculation from the soil water characteristic curve (SWCC). Firstly, the saturated coefficient of permeability is obtained through the permeability tests and the SWCC by pressure plate apparatus tests. Then van Genuchten model is chosen to calculate the unsaturated coefficient of permeability by the SWCC. The results show that the coefficient of permeability of unsaturated loess becomes higher with the increase of the volumetric water content and the decrease of the matric suction. The decrease of coefficient of permeability is more 50%. In order to understand the change of unsaturated coefficient of permeability of loess, SEM tests are conducted by JSM–6701F. From the SEM of loess, it is clear that the large pores become to decrease and the small and medium pores become to increase with the time.
  • [1] RAHARDJO H, NIO A S, ENGCHOON L, et al.Effects of groundwater table position and soil properties on stability of slope during rainfall[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(11): 1555-1564.
    [2] MUALEM Y.Hydraulic conductivity of unsaturated soils: prediction and formulas[J]. Agronomy. A Series of Monographs-American Society of Agronomy. 1986: 799-823.
    [3] LEONG E C, RAHARDJO H.Permeability functions for unsaturated soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1997, 123(12): 1118-1126.
    [4] FREDLUND D G.Unsaturated Soil Mechanics in Engineering Practice[M] Unsaturated soil mechanics in engineering practice. New York: Wiley, 2012.
    [5] MARSHALL T J.A Relation between permeability and size distribution of pores[J]. European Journal of Soil Science, 1958, 9(1): 1-8.
    [6] KUNZE R J, UEHARA G, GRAHAM K.Factors important in the calculation of hydraulic conductivity[J]. Soil Science Society of America Journal, 1968, 32(6): 760-765.
    [7] ROMERO E, GENS A, LLORET A.Water permeability, water retention and microstructure of unsaturated compacted Boom clay[J]. Engineering Geology, 1999, 54(1/2): 117-127.
    [8] ROMERO E, VECCHIA G D, JOMMI C.An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 2011, 61(4): 313-328.
    [9] ROMERO E.A microstructural insight into compacted clayey soils and their hydraulic properties[J]. Engineering Geology, 2013, 165(20): 3-19.
    [10] VECCHIA G D, COSENTINI R M, MUSSO G, et al.Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography[J]. Géotechnique, 2012, 62(7): 583-594.
    [11] ZHOU W H, YUEN K V, TAN F.Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities[J]. Engineering Geology, 2014, 179(11): 1-9.
    [12] FREDLUND D G, XING A.Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
    [13] YE W M, WAN M, CHEN B, et al.Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions[J]. Engineering Geology, 2012, 126(4): 1-7.
    [14] ZHAI Q, RAHARDJO H.Estimation of permeability function from the soil-water characteristic curve[J]. Engineering Geology, 2015, 199: 148-156.
    [15] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [16] RAHIMI A, RAHARDJO H, LEONG E C.Effect of range of soil-water characteristic curve measurements on estimation of permeability function[J]. Engineering Geology, 2015, 185: 96-104.
    [17] RAHIMI A, RAHARDJO H.New approach to improve soil-water characteristic curve to reduce variation in estimation of unsaturated permeability function[J]. Canadian Geotechnical Journal, 2016, 53: 717-725.
    [18] 王辉, 岳祖润, 叶朝良. 原状黄土及重塑黄土渗透特性的试验研究[J]. 石家庄铁道学院学报, 2009, 22(2): 20-22.
    (WANG Hui, YUE Zu-run, YE Chao-liang.Calculation and analysis on flexural strengthening with CFRP laminate considering the preexisting strain[J]. Journal of Shijiazhuang Railway Institute (Natural Scinence), 2009, 22(2): 20-22. (in Chinese))
    [19] 王铁行, 卢靖, 张建锋. 考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究[J]. 岩石力学与工程学报, 2006, 25(11): 2364-2368.
    (WANG Tie-hang, LU Jing, ZHANG Jian-feng.Experimental study on permeability coefficient of artificially compacted unsaturated loess considering influence of density[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2364-2368. (in Chinese))
    [20] 安鹏, 张爱军, 刘宏泰, 等. 重塑饱和黄土长期渗流劣化机制及其渗透性分析[J]. 岩土力学, 2013, 34(7): 1965-1971.
    (AN Peng, ZHANG Ai-jun, LIU Hong-tai, et al.Degradation mechanism of long-term seepage and permeability analysis of remolded saturated loess[J]. Rock and Soil Mechanics, 2013, 34(7): 1965-1971.(in Chinese))
    [21] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987, 17(12): 1309-1318.
    (LEI Xiang-yi.The pore types and collapsibility of loess in China[J]. Science China Chemistry, 1987, 17(12):1309-1318. (in Chinese))
  • 期刊类型引用(4)

    1. 焦韩伟,雷天奇,陈振鹏. 非饱和人工制备遗址土渗水系数预测. 勘察科学技术. 2024(06): 5-9 . 百度学术
    2. 杨建民,张正,窦国松,朱志根,刘阳. 非饱和土土压力在盂县基坑工程中的应用. 地下空间与工程学报. 2021(02): 541-555 . 百度学术
    3. 康海伟,李萍,侯晓坤,李同录,夏增选,张辉. 原状黄土土水特征滞后性研究. 水文地质工程地质. 2020(02): 76-83 . 百度学术
    4. 赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 18
出版历程
  • 收稿日期:  2017-06-10
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回