• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于触变流体理论的可液化土体振动孔压模型

王志华, 何健, 高洪梅, 王炳辉, 沈吉荣

王志华, 何健, 高洪梅, 王炳辉, 沈吉荣. 基于触变流体理论的可液化土体振动孔压模型[J]. 岩土工程学报, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
引用本文: 王志华, 何健, 高洪梅, 王炳辉, 沈吉荣. 基于触变流体理论的可液化土体振动孔压模型[J]. 岩土工程学报, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
Citation: WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023

基于触变流体理论的可液化土体振动孔压模型  English Version

基金项目: 国家自然科学基金项目(51678300,51378257,51309121); 江苏省普通高校研究生科研创新计划项目(KYLX16_0603)
详细信息
    作者简介:

    王志华(1977- ),男,江西东乡人,博士,教授,主要从事土力学与地震工程研究工作。E-mail: wzhnjut@163.com。

  • 中图分类号: TU441

Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid

  • 摘要: 明确可液化土体的振动孔压增长过程是土体液化分析和液化效应评价的关键问题。基于Moore型触变性流体结构理论,利用不同类型土体的32个不排水循环三轴试验证实了液化过程中的土体内部结构的破坏过程与振动孔压增长过程存在等价关系,验证了循环荷载下可液化土体的孔压触变机制。在此基础上,基于孔压触变流体速率方程构建了可液化土体的振动孔压增长模型,发现模型蕴含的振动孔压产生和增长机制可从能量角度获得合理解释。试验结果表明,模型中的振动孔压增长速率参数与土体有效围压、初始相对密度及循环应力比密切相关。利用该模型对不排水循环三轴试验进行了仿真模拟,验证了模型的合理性和可靠性。最后,讨论了模型的主要特点及可能的应用前景,为土体液化分析提供一种新的技术手段。
    Abstract: It is a key problem to confirm the growth process of dynamic pore pressure of the liquefiable soils in the analysis of liquefaction potential of soils or evaluation of liquefaction effect. Based on the structural theory of the Moore thixotropic fluid, 32 groups of undrained cyclic triaxial experiments on different types of soils are performed to verify the corresponding relationship between internal structure parameters of soils and dynamic pore pressure in the whole liquefaction process. The thixotropic mechanism induced by the pore water pressure in the liquefiable soils under cyclic loading is confirmed. Moreover, a dynamic pore pressure growth model for the liquefiable soils is proposed based on the rate equation for the thixotropic fluid induced by pore pressure. It is found that the generation and growth mechanism of dynamic pore pressure implied in the proposed model can be explained reasonably from the viewpoint of energy. The experimental results show that the parameter of growth rate of dynamic pore pressure in the model is closely related to the effective confining pressure, initial relative density and cyclic stress ratio. The proposed model is used to simulate the undrained cyclic triaxial experiments, and accordingly the rationality and reliability of the model are proved. Finally, the main characteristics and potential applications of the proposed model are discussed. This study provides a new technical means for the liquefaction analysis of soils.
  • [1] CETIN K O, BILGE H T.Cyclic large strain induced pore pressure models for saturated clean sands[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(3): 309-323.
    [2] SEED H B, MARTIN G R, LYSMER J.Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering, ASCE, 1976, 102(4): 323-346.
    [3] FINN W D L, MARTIN G R, LEE K W. An effective stress model for liquefaction[J]. Journal of Geotechnical Engineering, ASCE, 1977, 103(6): 517-533.
    [4] 徐志英, 沈珠江. 地震液化的有效应力二维动力分析方法[J]. 华东水利学院学报, 1981(3): 1-14.
    (XU Zhi-ying, SHEN Zhu-jiang.2D dynamic analysis of effective stresses of seismic liquefaction[J]. Journal of East China College of Hydraulic Engineering, 1981(3): 1-14. (in Chinese))
    [5] POLITO C P, GREEN R A, LEE J.Pore pressure generation models for sands and silty soils subjected to cyclic loading[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2008, 134(10): 1490-1500.
    [6] MARTIN G R, FINN W D L, SEED H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1975, 101(5): 423-438.
    [7] 汪闻韶. 饱和砂土振动孔隙水压力试验研究[J]. 水利学报, 1962(2): 37-47.
    (WANG Wen-shao.Study on pore water pressure of saturated sand during cyclic loading[J]. Journal of Hydraulic Engineering, 1962(2): 37-47. (in Chinese))
    [8] NEMAT-NASSER S, SHOKOOH A.A unified approach to densification and liquefaction cohesionless sand in cyclic shearing[J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678.
    [9] DAVIS R O, BERRILL J B.Energy dissipation and seismic liquefaction in sands[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(1): 59-68.
    [10] GREEN R A, MITCHELL J K.Energy-based evaluation and remediation of liquefiable soils[M]. Geotechnical Engineering for Transportation Projects, 2004: 1961-1970.
    [11] 郭莹, 刘艳华, 栾茂田, 等. 复杂应力条件下饱和松砂振动孔隙水压力增长的能量模式[J]. 岩土工程学报, 2005, 27(12): 1380-1385.
    (GUO Ying, LIU Yan-hua, LUAN Mao-tian, et al.Energy-based model of vibration-induced pore water pressure build-up of saturated loose sand under complex stress condition[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1380-1385. (in Chinese))
    [12] 刘叔灼, 李慧子, 单毅, 等. 基于能量法的尾矿砂动孔压模型研究[J]. 岩土工程学报, 2016, 38(11): 2051-2058.
    (LIU Shu-zhuo, LI Hui-zi, SHAN Yi, et al.Energy method for analyzing dynamic pore water pressure model for tailing soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2051-2058. (in Chinese))
    [13] 陈国兴, 刘雪珠. 南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究[J]. 岩土工程学报, 2004, 26(1): 79-82.
    (CHEN Guo-xing, LIU Xue-zhu.Study on dynamic pore water pressure in silty clay interbeded with fine sand in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82. (in Chinese))
    [14] OCHOA-CORNEJO F, BOBET A, JOHNSTON C, et al.Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticle[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 265-279.
    [15] 王志华, 吕丛, 许振巍, 等. 循环荷载下饱和砂土的孔压触变性[J]. 岩土工程学报, 2014, 36(10): 1831-1837.
    (WANG Zhi-hua, LÜ Cong, XU Zhen-wei, et al.Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. (in Chinese))
    [16] 陈文芳. 非牛顿流体的一些本构方程[J]. 力学学报, 1983(1): 16-26.
    (CHEN Wen-fang.Some constitutive equations for Non-Newtonian fluids[J]. Chinese Journal of Theoretical and Applied Mechanics, 1983(1): 16-26. (in Chinese))
    [17] GHIONNA V N, PORCINO D.Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(2): 194-202.
    [18] ESKISAR T, KARAKAN E, ALTUN S.Evaluation of cyclic stress-strain and liquefaction behavior of Izmir sand[J]. Arabian Journal for Science & Engineering, 2014, 39(11): 7513-7524.
    [19] BOULANGER R W, SEED R B.Liquefaction of sand under bidirectional monotonic and cyclic loading[J]. Journal of Geotechnical Engineering, 1995, 121(12): 870-878.
    [20] MONKUL M M, GÜLTEKIN C, GÜLVER M, et al. Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 27-36.
    [21] WANG S, YANG J, ONYEJEKWE S.Effect of previous cyclic shearing on liquefaction resistance of Mississippi River Valley silt[J]. Journal of Materials in Civil Engineering, 2012, 25(10): 1415-1423.
    [22] XENAKI V C, ATHANASOPOULOS G A.Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 1-12.
    [23] XENAKI V C, ATHANASOPOULOS G A.Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—Laboratory test results[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(8): 605-620.
    [24] KARIM M E, ALAM M J.Effect of non-plastic silt content on the liquefaction behavior of sand-silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150.
    [25] 陈育民, 刘汉龙, 周云东. 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28(9): 1139-1143.
    (CHEN Yu-min, LIU Han-long, ZHOU Yun-dong.Analysis on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139-1143. (in Chinese))
    [26] LADD R S, DORBY R, DUTKO P, et al.Pore water pressure buildup in clean sands because of cyclic straining[J]. Geotechnical Testing Journal, 1989, 12(1): 77-86.
    [27] DAVIS R O, BERRILL J B.Pore pressure and dissipated energy in earthquakes-field verification[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 127(3): 269-274.
    [28] SEED H B, LEE K L.Saturated sands during cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1966, 92(6): 105-134.
    [29] TSHUKAMOTO Y, KAWABE S, KOKUSHO T.Soil liquefaction observed at the lower stream of Tonegama river during the 2011 off the Pacific Coast of Tohoku earthquake[J]. Soils and Foundations, 2012, 52(5): 987-999.
    [30] RAMÓN V. Comparing liquefaction phenomena observed during the 2010 Maule, Chile earthquake and 2011 Great East Japan earthquake[C]// Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. Tokyo, 2012: 707-718.
  • 期刊类型引用(11)

    1. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
    2. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
    3. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
    4. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
    5. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
    6. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
    7. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
    8. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
    9. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
    10. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
    11. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-09-06
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回