• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

移动荷载作用下层状正交各向异性地基平面应变问题动力响应

张春丽, 王博, 祝彦知

张春丽, 王博, 祝彦知. 移动荷载作用下层状正交各向异性地基平面应变问题动力响应[J]. 岩土工程学报, 2018, 40(12): 2325-2331. DOI: 10.11779/CJGE201812022
引用本文: 张春丽, 王博, 祝彦知. 移动荷载作用下层状正交各向异性地基平面应变问题动力响应[J]. 岩土工程学报, 2018, 40(12): 2325-2331. DOI: 10.11779/CJGE201812022
ZHANG Chun-li, WANG Bo, ZHU Yan-zhi. Dynamic response to plane strain problem of multilayered orthotropic foundation under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2325-2331. DOI: 10.11779/CJGE201812022
Citation: ZHANG Chun-li, WANG Bo, ZHU Yan-zhi. Dynamic response to plane strain problem of multilayered orthotropic foundation under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2325-2331. DOI: 10.11779/CJGE201812022

移动荷载作用下层状正交各向异性地基平面应变问题动力响应  English Version

基金项目: 国家自然科学基金项目(51579226); 河南省高等学校青年骨干教师资助计划项目(2015GGJS-277); 河南省高等学校重点科研项目计划资助项目(17B560016); 中原工学院信息商务学院校级科研项目(ky1803)
详细信息
    作者简介:

    张春丽(1979- ),女,博士研究生,副教授,主要从事岩土和地下结构等方面的教学与科研工作。E-mail:chunli168@163.com。

  • 中图分类号: TU443

Dynamic response to plane strain problem of multilayered orthotropic foundation under moving loads

  • 摘要: 基于移动谐振荷载作用下单层正交各向异性地基的平面应变问题的动力方程,通过Fourier变换,引入状态向量,推导了直角坐标系下单层正交各向异性地基的传递矩阵,建立层状正交各向异性地基平面应变问题计算模型,利用传递矩阵方法,结合层间接触条件和连续条件,求得了直角坐标系下正交各向异性层状地基任意深度处的平面应变问题的位移和应力解析表达式。基于推导的理论方法,编制了相应的计算程序,验证了单层正交各向异性土体的计算结果,算例分析土体的分层特性和正交各向异性性质对土体变形的影响规律。研究结果表明:忽略土体的分层特性和上层土体的正交各向异性,不能准确描述地基的动力特性。
    Abstract: Based on the dynamic equation for plane strain problem of single-layer orthotropic foundation under moving harmonic loads, the transfer matrix of single-layer orthotropic foundation in the Cartesian coordinates is deduced through the Fourier transform and the introduction of state vector. Then the computational model for the layered orthotropic foundation is established. Considering the contact condition and the continuous condition between layers, the analytic expressions for the displacements and stresses at arbitrary depth in the plane strain problem of multilayered orthotropic foundation are derived by means of the transfer matrix method. Based on the theoretical solutions, the corresponding calculation programs are compiled to verify the calculated results of the single-layer orthotropic foundation and to study the influences of layered characteristics and orthotropic properties of soils on the amplitudes of vertical displacement of soil surface. The results indicate that neglecting the layered characteristics of soils and orthogonal anisotropy of the upper soils cannot accurately describe the dynamic characteristics of foundation.
  • [1] GRUNDMANN H, LIEB M, TROMMER E.The response of a layered half-space to traffic loads moving along its surface[J]. Archive of Applied Mechanics, 1999, 69(1): 55-67.
    [2] 钟阳, 孙林, 黄永根. 轴对称半空间层状弹性体系动态反应的理论解[J]. 中国公路学报, 1998, 11(2): 24-29.
    (ZHONG Yang, SUN Lin, HUANG Yong-gen.The explicit solution of axisymmetic elastodynamic problem for multilayered halfspace[J]. China Journal of Highway and Transport, 1998, 11(2): 24-29. (in Chinese))
    [3] 王有凯, 龚耀清. 任意荷载作用下层状横观各向同性弹性地基的直角坐标解[J]. 工程力学, 2006, 23(5): 9-13.
    (WANG You-kai, GONG Yao-qing.Analytical solution of transversely isotropic elastic multilayered subgrade under arbitrary loading in rectangular coordinates[J]. Engineering Mechanics, 2006, 23(5): 9-13. (in Chinese))
    [4] 艾智勇, 李博. 横观各向同性层状地基平面应变问题的解析层元解[J]. 岩土工程学报, 2012, 34(10): 1787-1791.
    (AI Zhi-yong, LI Bo.Analytical layer element solutions to plane strain problem of transversely isotropic multilayered soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1787-1791. (in Chinese))
    [5] AI Z Y, ZHANG Y F.Plane strain dynamic response of a transversely isotropic multilayered half-plane[J]. Soil Dynamics & Earthquake Engineering, 2015, 75: 211-219.
    [6] AI Z Y, REN G P.Dynamic analysis of a transversely isotropic multilayered half-plane subjected to a moving load[J]. Soil Dynamics & Earthquake Engineering, 2016, 83: 162-166.
    [7] 邓学钧, 黄晓明, 沈伟新. 弹性层状体系的动力响应分析[J]. 土木工程学报, 1995, 28(3): 9-16.
    (DENG Xue-jun, HUANG Xiao-ming, SHEN Wei-xin.Dynamic response analysis of elastic muti-layered system[J]. China Civil Engineering Journal, 1995, 28(3): 9-16. (in Chinese))
    [8] RUNESSON K, BOOKER J R.Finite element analysis of elastic-plastic layered soil using discrete Fourier series expansion[J]. International Journal for Numerical Methods in Engineering, 1983, 19(4): 473-478.
    [9] LU Z, YAO H L, WU W P, CHENG P.Dynamic stress and deformation of a layered road structure under vehicle traffic loads: experimental measurements and numerical calculations[J]. Soil Dynamics & Earthquake Engineering, 2012, 39: 100-112.
    [10] 王新宽. 路基土体力学响应影响因素研究[J]. 内蒙古公路与运输, 2016(3): 25-27.
    (WANG Xin-kuan.Study on the influence factors of mechanical response of subgrade soil[J]. Highways & Transportation in Inner Mongolia, 2016(3): 25-27. (in Chinese))
    [11] JIN H L, KIM J K, TASSOULAS J L.Dynamic analysis of a layered half-space subjected to moving line loads[J]. Soil Dynamics & Earthquake Engineering, 2013, 47:16-31.
    [12] 方保镕, 周继东, 李医民. 矩阵论[M]. 北京:清华大学出版社, 2013.
    (FANG Bao-rong, ZHOU Ji-dong, LI Yi-min.Matrix theory[M]. Beijing: Tsinghua University Press, 2013. (in Chinese))
    [13] WANG Zheng-sheng.Introduction to matrix theory[M]. Beijing: Science Press, 2015.
    [14] BRIGHAM E O.The fast Fourier transform[M]. New Jersey: Prentice-Hall, 1974.
    [15] 张春丽, 祝彦知, 王博. 正交各向异性地基平面问题动力响应研究[J]. 力学季刊, 2016, 37(4): 648-657.
    (ZHANG Chun-li, ZHU Yan-zhi, WANG Bo.Research on two-dimensional dynamic response of orthotropic medium[J]. Chinese Quarterly of Mechanics, 2016, 37(4): 648-657. (in Chinese))
    [16] 张晓霞, 周柏卓. 正交各向异性材料弹性本构关系分析[J]. 航空发动机, 1997, 23(1): 20-25.
    (ZHANG Xiao-xia, ZHOU Bo-zhuo.Orthogonal anisotropic elastic constitutive relation analysis[J]. Aeroengine, 1997, 23(1): 20-25. (in Chinese))
  • 期刊类型引用(11)

    1. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
    2. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
    3. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
    4. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
    5. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
    6. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
    7. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
    8. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
    9. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
    10. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
    11. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-09-17
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回